Supervised machine learning-based prediction for in-hospital pressure injury development using electronic health records: A retrospective observational cohort study in a university hospital in Japan

医学 随机森林 急诊医学 预测效度 机器学习 健康档案 临床决策支持系统 人工智能 风险评估 观察研究 回顾性队列研究 物理疗法 逻辑回归 病历 接收机工作特性 计算机科学 医疗保健 内科学 决策支持系统 临床心理学 经济增长 经济 计算机安全
作者
Gojiro Nakagami,Shinichiroh Yokota,Aya Kitamura,Toshiaki Takahashi,Kojiro Morita,Hiroshi Noguchi,Kazuhiko Ohe,Hiromi Sanada
出处
期刊:International Journal of Nursing Studies [Elsevier]
卷期号:119: 103932-103932 被引量:34
标识
DOI:10.1016/j.ijnurstu.2021.103932
摘要

In hospitals, nurses are responsible for pressure injury risk assessment using several kinds of risk assessment scales. However, their predictive validity is insufficient to initiate targeted preventive strategy for each patient. The use of electronic health records with machine learning technique is a promising strategy to provide automated clinical decision-making aid. The purpose of this study was to construct a predictive model for pressure injury development which included feature variables that can be collected on the first day of hospitalization by nurses who routinely input the data to electronic health records. Retrospective observational cohort study. This study was conducted at a university hospital in Japan. This study used electronic health records, which include entry/discharge records, basic nursing records, and pressure injury management documents (N = 75,353). The outcome measure was the pressure injuries which developed outside of an operation theatre and frequently appeared on the specific body parts at high risk of pressure injury development. We utilized four major classifiers: logistic regression, random forest, linear support vector machine, and extreme gradient boosting (XGBoost) with 5-fold cross-validation technique. The area under the receiver operating characteristic curve (AUC) was used for evaluating predictive performance. The proportion of hospital-acquired pressure injuries was 0.52%. The receiver operating characteristic curves revealed the best predictive performance for the XGBoost model, achieving the highest sensitivity of 0.78±0.03 and AUC of 0.80±0.02 amongst four types of classifiers. Variables related to difficulty in activities of daily living, anorexia, and respiratory or cardiac disorders were extracted as important features. Our findings suggest that routinely collected health data by nurses on the first day of patient admission have the potential to help determine high-risk patients for pressure injury development. Tweetable abstract: Machine learning models on routinely collected electronic health records data successfully predict pressure injury development during hospitalization. This work was supported by a JSPS KAKENHI Grant-in-Aid for Exploratory Research (16K15865).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七大洋的风完成签到,获得积分10
刚刚
左丘幼旋1发布了新的文献求助10
1秒前
amumu发布了新的文献求助10
1秒前
三金发布了新的文献求助10
1秒前
3秒前
kingwill应助明天更好采纳,获得20
3秒前
4秒前
乐乐应助gaos采纳,获得10
4秒前
lzy完成签到,获得积分10
4秒前
阿烨发布了新的文献求助10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
gcc应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
小二郎应助sure采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
yin完成签到,获得积分10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
36456657应助CC采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678