Supervised machine learning-based prediction for in-hospital pressure injury development using electronic health records: A retrospective observational cohort study in a university hospital in Japan

医学 随机森林 急诊医学 预测效度 机器学习 健康档案 临床决策支持系统 人工智能 风险评估 观察研究 回顾性队列研究 物理疗法 逻辑回归 病历 接收机工作特性 计算机科学 医疗保健 内科学 决策支持系统 临床心理学 经济增长 经济 计算机安全
作者
Gojiro Nakagami,Shinichiroh Yokota,Aya Kitamura,Toshiaki Takahashi,Kojiro Morita,Hiroshi Noguchi,Kazuhiko Ohe,Hiromi Sanada
出处
期刊:International Journal of Nursing Studies [Elsevier]
卷期号:119: 103932-103932 被引量:27
标识
DOI:10.1016/j.ijnurstu.2021.103932
摘要

In hospitals, nurses are responsible for pressure injury risk assessment using several kinds of risk assessment scales. However, their predictive validity is insufficient to initiate targeted preventive strategy for each patient. The use of electronic health records with machine learning technique is a promising strategy to provide automated clinical decision-making aid. The purpose of this study was to construct a predictive model for pressure injury development which included feature variables that can be collected on the first day of hospitalization by nurses who routinely input the data to electronic health records. Retrospective observational cohort study. This study was conducted at a university hospital in Japan. This study used electronic health records, which include entry/discharge records, basic nursing records, and pressure injury management documents (N = 75,353). The outcome measure was the pressure injuries which developed outside of an operation theatre and frequently appeared on the specific body parts at high risk of pressure injury development. We utilized four major classifiers: logistic regression, random forest, linear support vector machine, and extreme gradient boosting (XGBoost) with 5-fold cross-validation technique. The area under the receiver operating characteristic curve (AUC) was used for evaluating predictive performance. The proportion of hospital-acquired pressure injuries was 0.52%. The receiver operating characteristic curves revealed the best predictive performance for the XGBoost model, achieving the highest sensitivity of 0.78±0.03 and AUC of 0.80±0.02 amongst four types of classifiers. Variables related to difficulty in activities of daily living, anorexia, and respiratory or cardiac disorders were extracted as important features. Our findings suggest that routinely collected health data by nurses on the first day of patient admission have the potential to help determine high-risk patients for pressure injury development. Tweetable abstract: Machine learning models on routinely collected electronic health records data successfully predict pressure injury development during hospitalization. This work was supported by a JSPS KAKENHI Grant-in-Aid for Exploratory Research (16K15865).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chiyudoubao发布了新的文献求助10
刚刚
1秒前
hangli完成签到,获得积分10
1秒前
生查子完成签到 ,获得积分10
1秒前
2秒前
芊芊芊儿发布了新的文献求助10
2秒前
2秒前
2秒前
阿汐完成签到,获得积分10
3秒前
我是老大应助DD立芬采纳,获得10
3秒前
4秒前
6秒前
skyline完成签到 ,获得积分10
7秒前
铃儿响叮党完成签到,获得积分10
7秒前
Yishai_Song应助虚心千凡采纳,获得10
8秒前
薰硝壤应助虚心千凡采纳,获得10
8秒前
随机子应助虚心千凡采纳,获得10
8秒前
薰硝壤应助虚心千凡采纳,获得10
9秒前
薰硝壤应助虚心千凡采纳,获得10
9秒前
可爱的函函应助小冉采纳,获得10
9秒前
薰硝壤应助虚心千凡采纳,获得10
9秒前
薰硝壤应助虚心千凡采纳,获得10
9秒前
薰硝壤应助虚心千凡采纳,获得10
9秒前
9秒前
可爱的函函应助bsc采纳,获得10
10秒前
sunshine完成签到,获得积分10
10秒前
10秒前
11秒前
sss发布了新的文献求助10
11秒前
fengxj完成签到 ,获得积分10
12秒前
13秒前
Orange应助想人陪的烤鸡采纳,获得10
14秒前
14秒前
燕燕完成签到 ,获得积分10
15秒前
jiyixiao1完成签到,获得积分10
15秒前
15秒前
16秒前
多啦2642完成签到,获得积分10
17秒前
小二郎应助自信若灵采纳,获得10
17秒前
uuuu完成签到,获得积分10
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169845
求助须知:如何正确求助?哪些是违规求助? 2820912
关于积分的说明 7932586
捐赠科研通 2481300
什么是DOI,文献DOI怎么找? 1321727
科研通“疑难数据库(出版商)”最低求助积分说明 633347
版权声明 602561