Supervised machine learning-based prediction for in-hospital pressure injury development using electronic health records: A retrospective observational cohort study in a university hospital in Japan

医学 随机森林 急诊医学 预测效度 机器学习 健康档案 临床决策支持系统 人工智能 风险评估 观察研究 回顾性队列研究 物理疗法 逻辑回归 病历 接收机工作特性 计算机科学 医疗保健 内科学 决策支持系统 临床心理学 经济增长 经济 计算机安全
作者
Gojiro Nakagami,Shinichiroh Yokota,Aya Kitamura,Toshiaki Takahashi,Kojiro Morita,Hiroshi Noguchi,Kazuhiko Ohe,Hiromi Sanada
出处
期刊:International Journal of Nursing Studies [Elsevier BV]
卷期号:119: 103932-103932 被引量:35
标识
DOI:10.1016/j.ijnurstu.2021.103932
摘要

In hospitals, nurses are responsible for pressure injury risk assessment using several kinds of risk assessment scales. However, their predictive validity is insufficient to initiate targeted preventive strategy for each patient. The use of electronic health records with machine learning technique is a promising strategy to provide automated clinical decision-making aid. The purpose of this study was to construct a predictive model for pressure injury development which included feature variables that can be collected on the first day of hospitalization by nurses who routinely input the data to electronic health records. Retrospective observational cohort study. This study was conducted at a university hospital in Japan. This study used electronic health records, which include entry/discharge records, basic nursing records, and pressure injury management documents (N = 75,353). The outcome measure was the pressure injuries which developed outside of an operation theatre and frequently appeared on the specific body parts at high risk of pressure injury development. We utilized four major classifiers: logistic regression, random forest, linear support vector machine, and extreme gradient boosting (XGBoost) with 5-fold cross-validation technique. The area under the receiver operating characteristic curve (AUC) was used for evaluating predictive performance. The proportion of hospital-acquired pressure injuries was 0.52%. The receiver operating characteristic curves revealed the best predictive performance for the XGBoost model, achieving the highest sensitivity of 0.78±0.03 and AUC of 0.80±0.02 amongst four types of classifiers. Variables related to difficulty in activities of daily living, anorexia, and respiratory or cardiac disorders were extracted as important features. Our findings suggest that routinely collected health data by nurses on the first day of patient admission have the potential to help determine high-risk patients for pressure injury development. Tweetable abstract: Machine learning models on routinely collected electronic health records data successfully predict pressure injury development during hospitalization. This work was supported by a JSPS KAKENHI Grant-in-Aid for Exploratory Research (16K15865).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
甜甜芾完成签到,获得积分10
4秒前
共享精神应助三又一十八采纳,获得10
4秒前
Mycee完成签到 ,获得积分10
5秒前
GJL完成签到,获得积分20
5秒前
小十七果发布了新的文献求助10
5秒前
TTw完成签到,获得积分10
5秒前
赵亚男关注了科研通微信公众号
5秒前
6秒前
6秒前
Dding完成签到,获得积分10
7秒前
1514536hhh发布了新的文献求助30
7秒前
清爽绣连发布了新的文献求助30
7秒前
boyue完成签到,获得积分10
7秒前
wanci应助bofu采纳,获得10
8秒前
lightsyang完成签到,获得积分10
10秒前
10秒前
11秒前
fan发布了新的文献求助10
11秒前
魔幻友菱完成签到 ,获得积分10
12秒前
12秒前
12秒前
yx_cheng应助英俊绿柏采纳,获得20
12秒前
13秒前
14秒前
14秒前
桐桐应助yyy采纳,获得10
14秒前
wu8577应助bofu采纳,获得10
15秒前
司空豁发布了新的文献求助20
15秒前
qian72133完成签到,获得积分10
16秒前
李健应助科研小扒菜采纳,获得10
16秒前
16秒前
16秒前
212发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
1514536hhh完成签到,获得积分20
18秒前
路漫漫123完成签到,获得积分10
18秒前
plant发布了新的文献求助10
18秒前
19秒前
H15120375984发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105