Cooperative Task Offloading and Block Mining in Blockchain-Based Edge Computing With Multi-Agent Deep Reinforcement Learning

计算机科学 强化学习 移动边缘计算 边缘计算 块链 分布式计算 纳什均衡 块(置换群论) 资源配置 博弈论 GSM演进的增强数据速率 人工智能 计算机网络 计算机安全 数学优化 经济 微观经济学 数学 几何学
作者
Dinh C. Nguyen,Ming Ding,Pubudu N. Pathirana,Aruna Seneviratne,Jun Li,H. Vincent Poor
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 2021-2037 被引量:12
标识
DOI:10.1109/tmc.2021.3120050
摘要

The convergence of mobile edge computing (MEC) and blockchain is transforming the current computing services in mobile networks, by offering task offloading solutions with security enhancement empowered by blockchain mining. Nevertheless, these important enabling technologies have been studied separately in most existing works. This article proposes a novel cooperative task offloading and block mining (TOBM) scheme for a blockchain-based MEC system where each edge device not only handles data tasks but also deals with block mining for improving the system utility. To address the latency issues caused by the blockchain operation in MEC, we develop a new Proof-of-Reputation consensus mechanism based on a lightweight block verification strategy. A multi-objective function is then formulated to maximize the system utility of the blockchain-based MEC system, by jointly optimizing offloading decision, channel selection, transmit power allocation, and computational resource allocation. We propose a novel distributed deep reinforcement learning-based approach by using a multi-agent deep deterministic policy gradient algorithm. We then develop a game-theoretic solution to model the offloading and mining competition among edge devices as a potential game, and prove the existence of a pure Nash equilibrium. Simulation results demonstrate the significant system utility improvements of our proposed scheme over baseline approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强亦丝应助跳跃采纳,获得10
1秒前
英俊的铭应助cc采纳,获得10
1秒前
huangsan完成签到,获得积分10
1秒前
匹诺曹完成签到,获得积分10
1秒前
2秒前
华仔应助进取拼搏采纳,获得10
2秒前
3秒前
dingdong发布了新的文献求助10
3秒前
you完成签到 ,获得积分10
4秒前
qwf完成签到 ,获得积分10
4秒前
5秒前
万能图书馆应助一一采纳,获得10
5秒前
执着跳跳糖完成签到 ,获得积分10
6秒前
阳yang完成签到,获得积分10
6秒前
牛头人完成签到,获得积分10
6秒前
7秒前
Rrr发布了新的文献求助10
7秒前
8秒前
8秒前
serenity完成签到 ,获得积分10
8秒前
Benliu完成签到,获得积分10
8秒前
csq发布了新的文献求助10
9秒前
10秒前
Hello应助外向的醉易采纳,获得10
10秒前
DWWWDAADAD完成签到,获得积分10
13秒前
科研通AI5应助一天八杯水采纳,获得10
14秒前
杨大仙儿完成签到 ,获得积分10
14秒前
16秒前
坚强的广山应助木头人采纳,获得200
16秒前
嘻哈学习完成签到,获得积分10
16秒前
16秒前
16秒前
ying完成签到,获得积分10
17秒前
17秒前
虚幻白玉完成签到,获得积分10
18秒前
安静的孤萍完成签到,获得积分10
19秒前
19秒前
lyz666发布了新的文献求助10
19秒前
liuxl发布了新的文献求助10
20秒前
smile完成签到,获得积分20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808