作者
Huichao Yang,Chuanxi Wang,Feiran Chen,Le Yue,Xuesong Cao,Jing Li,Xiaoli Zhao,Fengchang Wu,Zhenyu Wang,Baoshan Xing
摘要
Improving maize drought tolerance is of great importance for scaling up production due to food security and population growth. Carbon dots (CDs) were synthesized by hydrothermal method with citric acid and ethylenediamine as carbon sources. Then, CDs (5 ml, 5 mg‧L-1) were sprayed on 25th day-old maize (Zea mays L., drought-stress, 35% soil moisture) for seven consecutive days (spraying ultra-pure water as control), after which the physiological parameters and rhizospheric properties of maize under drought were evaluated. Foliar sprayed CDs (5 mg‧L-1) could increase root exudates (e.g., succinic acid (14.5 folds), pyruvic acid (10.0 folds), and betaine (11.8 folds)), and modify microbial community. Particularly, the relative abundance of Pseudomonas, Sphingomonas, Nitrospira, and Conocybe were significantly increased by 344.4%, 233.3%, 126.2%, and 122.6%, respectively. The altered microbial abundance could improve soil available nitrogen and phosphorus by 33.5% and 16.8%, respectively, and increase plant water uptake by 37.2%. The change of exudate synthesis and microbial abundance could be driven by the significantly increased in net photosynthesis rate by 122.9%, and carbohydrate content by 35.4% in shoots and 113.6% in roots, respectively upon foliar application of CDs. Meanwhile, fresh weight of shoots and roots were increased by 62.1% and 50.6%, and dry weight of shoots and roots were increased by 29.2% and 37.5%, respectively. These results demonstrated that foliar application of CDs could improve the rhizosphere environment to enhance maize drought tolerance and even growth. Therefore, foliar application of CDs would be a promising strategy for sustainable nano-agriculture in response to drought stress.