Enabling Rapid and Accurate Construction of CCSD(T)-Level Potential Energy Surface of Large Molecules Using Molecular Tailoring Approach

鞍点 势能面 乙酰丙酮 工作(物理) 分子 基态 势能 原子物理学 最大值和最小值 化学 计算化学 材料科学 物理 热力学 量子力学 几何学 数学 无机化学 数学分析
作者
Subodh S. Khire,Nalini D. Gurav,Apurba Nandi,Shridhar R. Gadre
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:126 (8): 1458-1464 被引量:7
标识
DOI:10.1021/acs.jpca.2c00025
摘要

The construction of a potential energy surface (PES) of even a medium-sized molecule employing correlated theory, such as CCSD(T), is arduous due to the high computational cost involved. The present study reports the possibility of efficiently constructing such a PES of molecules containing up to 15 atoms and 550 basis functions by employing the fragment-based molecular tailoring approach (MTA) on off-the-shelf hardware. The MTA energies at the CCSD(T)/aug-cc-pVTZ level for several geometries of three test molecules, viz., acetylacetone, N-methylacetamide, and tropolone, are reported. These energies are in excellent agreement with their full calculation counterparts with a time advantage factor of 3-5. The energy barrier from the ground to transition state is also accurately captured. Further, we demonstrate the accuracy and efficiency of MTA for estimating the energy gradients at the CCSD(T) level. As a further application of our MTA methodology, the energies of acetylacetone at ∼430 geometries are computed at the CCSD(T)/aug-cc-pVTZ level and used for generating a Δ-machine learning (Δ-ML) PES. This leads to the H-transfer barrier of 3.02 kcal/mol, well in agreement with the benchmarked barrier of 3.19 kcal/mol. The fidelity of this Δ-ML PES is examined by geometry optimization and normal mode frequency calculations of global minima and saddle point geometries. We trust that the present work is a major development for the rapid and accurate construction of PES at the CCSD(T) level for molecules containing up to 20 atoms and 600 basis functions using off-the-shelf hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
劲秉应助你好采纳,获得10
3秒前
Eunhyo发布了新的文献求助10
4秒前
中岛悠斗完成签到,获得积分10
7秒前
rad1413完成签到 ,获得积分10
8秒前
8秒前
高高灵安发布了新的文献求助10
8秒前
小朋友完成签到,获得积分10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
不安青牛应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
潇潇雨歇应助科研通管家采纳,获得10
10秒前
潇潇雨歇应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
NexusExplorer应助乐观的如豹采纳,获得10
11秒前
自信筮完成签到,获得积分10
12秒前
yao发布了新的文献求助10
13秒前
小朋友发布了新的文献求助30
18秒前
思源应助AdoreU采纳,获得10
20秒前
21秒前
wenyiboy完成签到,获得积分10
21秒前
打打应助hexiaoxiao采纳,获得10
25秒前
爸爸完成签到,获得积分10
26秒前
laogao完成签到,获得积分10
28秒前
奋斗灵波完成签到,获得积分10
28秒前
劲秉应助张烽采纳,获得10
30秒前
yao完成签到,获得积分10
32秒前
34秒前
睡到人间煮饭时关注了科研通微信公众号
35秒前
37秒前
After222发布了新的文献求助10
39秒前
浮一大白完成签到,获得积分10
40秒前
AdoreU发布了新的文献求助10
41秒前
42秒前
42秒前
小二郎应助After222采纳,获得10
44秒前
斯文败类应助闵问柳采纳,获得10
44秒前
ZLDDLDX发布了新的文献求助10
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352591
求助须知:如何正确求助?哪些是违规求助? 2977668
关于积分的说明 8680688
捐赠科研通 2658572
什么是DOI,文献DOI怎么找? 1455884
科研通“疑难数据库(出版商)”最低求助积分说明 674150
邀请新用户注册赠送积分活动 664709