亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Model to Predict Risperidone Active Moiety Concentration Based on Initial Therapeutic Drug Monitoring

利培酮 治疗药物监测 药品 部分 人工智能 机器学习 心理学 计算机科学 药理学 医学 精神分裂症(面向对象编程) 精神科 化学 立体化学
作者
Wei Guo,Ze Yu,Ya Gao,Xiaoqian Lan,Yannan Zang,Yu Peng,Zeyuan Wang,Wenzhuo Sun,Xin Hao,Fei Gao
出处
期刊:Frontiers in Psychiatry [Frontiers Media SA]
卷期号:12 被引量:14
标识
DOI:10.3389/fpsyt.2021.711868
摘要

Risperidone is an efficacious second-generation antipsychotic (SGA) to treat a wide spectrum of psychiatric diseases, whereas its active moiety (risperidone and 9-hydroxyrisperidone) concentration without a therapeutic reference range may increase the risk of adverse drug reactions. We aimed to establish a prediction model of risperidone active moiety concentration in the next therapeutic drug monitoring (TDM) based on the initial TDM information using machine learning methods. A total of 983 patients treated with risperidone between May 2017 and May 2018 in Beijing Anding Hospital were collected as the data set. Sixteen predictors (the initial TDM value, dosage, age, WBC, PLT, BUN, weight, BMI, prolactin, ALT, MECT, Cr, AST, Ccr, TDM interval, and RBC) were screened from 26 variables through univariate analysis ( p < 0.05) and XGBoost (importance score >0). Ten algorithms (XGBoost, LightGBM, CatBoost, AdaBoost, Random Forest, support vector machine, lasso regression, ridge regression, linear regression, and k-nearest neighbor) compared the model performance, and ultimately, XGBoost was chosen to establish the prediction model. A cohort of 210 patients treated with risperidone between March 1, 2019, and May 31, 2019, in Beijing Anding Hospital was used to validate the model. Finally, the prediction model was evaluated, obtaining R 2 (0.512 in test cohort; 0.374 in validation cohort), MAE (10.97 in test cohort; 12.07 in validation cohort), MSE (198.55 in test cohort; 324.15 in validation cohort), RMSE (14.09 in test cohort; 18.00 in validation cohort), and accuracy of the predicted TDM within ±30% of the actual TDM (54.82% in test cohort; 60.95% in validation cohort). The prediction model has promising performance to facilitate rational risperidone regimen on an individualized level and provide reference for other antipsychotic drugs' risk prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NattyPoe发布了新的文献求助10
刚刚
科研通AI6.1应助李鼎鼎采纳,获得10
3秒前
深情安青应助端庄天玉采纳,获得10
3秒前
小二郎应助ayu采纳,获得10
11秒前
华仔应助动听的涵山采纳,获得30
12秒前
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
15秒前
Amethystine完成签到 ,获得积分10
19秒前
sci大户发布了新的文献求助10
23秒前
小树完成签到 ,获得积分10
25秒前
27秒前
今后应助Hairee采纳,获得10
29秒前
S1mon发布了新的文献求助10
31秒前
34秒前
38秒前
tracyzhang完成签到 ,获得积分10
39秒前
嬴渠梁发布了新的文献求助30
39秒前
哒哒哒发布了新的文献求助10
43秒前
45秒前
西门如豹发布了新的文献求助10
51秒前
54秒前
呷茶赏花完成签到 ,获得积分10
57秒前
57秒前
大力的远望完成签到 ,获得积分10
58秒前
共享精神应助WittingGU采纳,获得10
1分钟前
羊屎蛋完成签到 ,获得积分10
1分钟前
研友_08oErn完成签到,获得积分20
1分钟前
吴兰田完成签到,获得积分10
1分钟前
顺利一德完成签到 ,获得积分10
1分钟前
研友_08oErn发布了新的文献求助30
1分钟前
1分钟前
1分钟前
船长完成签到,获得积分10
1分钟前
Hairee发布了新的文献求助10
1分钟前
zjjcug发布了新的文献求助10
1分钟前
寻道图强完成签到,获得积分0
1分钟前
zyh完成签到 ,获得积分10
1分钟前
1分钟前
Hairee完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880361
求助须知:如何正确求助?哪些是违规求助? 6570993
关于积分的说明 15689624
捐赠科研通 5000006
什么是DOI,文献DOI怎么找? 2694129
邀请新用户注册赠送积分活动 1635953
关于科研通互助平台的介绍 1593390