<i>Ab initio</i> phonon transport across grain boundaries in graphene using machine learning based on small dataset

石墨烯 声子 材料科学 从头算 位错 晶界 密度泛函理论 热导率 原子间势 凝聚态物理 机器学习 计算机科学 分子动力学 纳米技术 微观结构 量子力学 物理 复合材料 冶金
作者
Amirreza Hashemi,Rui-qiang Guo,Keivan Esfarjani,Sangyeop Lee
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (4)
标识
DOI:10.1103/physrevmaterials.6.044004
摘要

Establishing the structure-property relationship for grain boundaries (GBs) is critical for developing next-generation functional materials but has been severely hampered due to its extremely large configurational space. Atomistic simulations with low computational cost and high predictive power are strongly desirable, but the conventional simulations using empirical interatomic potentials and density functional theory suffer from the lack of predictive power and high computational cost, respectively. A machine learning interatomic potential (MLIP) recently emerged but often requires extensive size of the training dataset, making it a less feasible approach. Here, we demonstrate that an MLIP trained with a rationally designed small training dataset can predict thermal transport across GBs in graphene with ab initio accuracy at an affordable computational cost. We employed a rational approach based on the structural unit model to find a small set of GBs that can represent the entire configurational space and thus can serve as a cost-effective training dataset for the MLIP. Only 5 GBs were found to be enough to represent the entire configurational space of graphene GBs. Using the atomistic Green's function approach and the MLIP, we revealed that the structure-thermal resistance relation in graphene does not follow the common understanding that large dislocation density causes larger thermal resistance. In fact, thermal resistance is nearly independent of dislocation density at room temperature and is higher when the dislocation density is small at sub-room temperature. We explain this intriguing behavior with the buckling near a GB causing a strong scattering of flexural phonon modes. In this paper, we show that a machine learning technique combined with conventional wisdom (e.g., structural unit model) can extend the recent success of ab initio thermal transport simulation, which has been mostly limited to single crystals, to complex yet practically important polycrystals with GBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
双子土豆泥完成签到 ,获得积分10
刚刚
sduweiyu完成签到 ,获得积分10
1秒前
3秒前
何姗悦完成签到 ,获得积分20
3秒前
讨厌水煮蛋完成签到,获得积分10
3秒前
4秒前
hzhang完成签到,获得积分10
4秒前
自然衣完成签到,获得积分10
4秒前
HP完成签到,获得积分10
4秒前
贴贴完成签到,获得积分10
4秒前
舒心豪英完成签到 ,获得积分10
5秒前
半胱氨酸完成签到,获得积分10
5秒前
5秒前
曦曦完成签到,获得积分10
5秒前
6秒前
今后应助cyn采纳,获得10
6秒前
小美最棒完成签到,获得积分10
6秒前
远山有灯完成签到,获得积分10
7秒前
8秒前
克林沙星发布了新的文献求助50
8秒前
mengwensi完成签到,获得积分10
8秒前
FashionBoy应助山雀采纳,获得10
8秒前
liuqizong123完成签到,获得积分10
9秒前
凪白完成签到,获得积分10
9秒前
HP发布了新的文献求助10
9秒前
又是一年完成签到,获得积分10
9秒前
土亢土亢土完成签到,获得积分0
10秒前
一只生物狗完成签到,获得积分10
11秒前
子车半烟完成签到,获得积分10
11秒前
小虾米发布了新的文献求助10
13秒前
xmhxpz完成签到,获得积分10
13秒前
13秒前
13秒前
开心的谷兰完成签到,获得积分10
15秒前
wind2631完成签到,获得积分10
15秒前
热情若翠完成签到,获得积分10
15秒前
MchemG应助玉玉采纳,获得20
15秒前
15秒前
Sarah完成签到 ,获得积分10
16秒前
健康的代芙完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027