<i>Ab initio</i> phonon transport across grain boundaries in graphene using machine learning based on small dataset

石墨烯 声子 材料科学 从头算 位错 晶界 密度泛函理论 热导率 原子间势 凝聚态物理 机器学习 计算机科学 分子动力学 纳米技术 微观结构 量子力学 物理 复合材料 冶金
作者
Amirreza Hashemi,Rui-qiang Guo,Keivan Esfarjani,Sangyeop Lee
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (4)
标识
DOI:10.1103/physrevmaterials.6.044004
摘要

Establishing the structure-property relationship for grain boundaries (GBs) is critical for developing next-generation functional materials but has been severely hampered due to its extremely large configurational space. Atomistic simulations with low computational cost and high predictive power are strongly desirable, but the conventional simulations using empirical interatomic potentials and density functional theory suffer from the lack of predictive power and high computational cost, respectively. A machine learning interatomic potential (MLIP) recently emerged but often requires extensive size of the training dataset, making it a less feasible approach. Here, we demonstrate that an MLIP trained with a rationally designed small training dataset can predict thermal transport across GBs in graphene with ab initio accuracy at an affordable computational cost. We employed a rational approach based on the structural unit model to find a small set of GBs that can represent the entire configurational space and thus can serve as a cost-effective training dataset for the MLIP. Only 5 GBs were found to be enough to represent the entire configurational space of graphene GBs. Using the atomistic Green's function approach and the MLIP, we revealed that the structure-thermal resistance relation in graphene does not follow the common understanding that large dislocation density causes larger thermal resistance. In fact, thermal resistance is nearly independent of dislocation density at room temperature and is higher when the dislocation density is small at sub-room temperature. We explain this intriguing behavior with the buckling near a GB causing a strong scattering of flexural phonon modes. In this paper, we show that a machine learning technique combined with conventional wisdom (e.g., structural unit model) can extend the recent success of ab initio thermal transport simulation, which has been mostly limited to single crystals, to complex yet practically important polycrystals with GBs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中恐完成签到,获得积分0
1秒前
林夕完成签到 ,获得积分10
4秒前
7秒前
小西完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助30
14秒前
量子星尘发布了新的文献求助10
15秒前
去码头整点薯条完成签到 ,获得积分10
15秒前
时代更迭完成签到 ,获得积分10
16秒前
17秒前
652183758完成签到 ,获得积分10
17秒前
活力酒窝完成签到 ,获得积分10
21秒前
lizuosheng1972完成签到,获得积分10
23秒前
25秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
量子星尘发布了新的文献求助10
31秒前
33秒前
andre20完成签到 ,获得积分10
34秒前
蔡从安完成签到,获得积分20
37秒前
爱学习的结香酱完成签到 ,获得积分20
41秒前
量子星尘发布了新的文献求助10
42秒前
魁梧的觅松完成签到 ,获得积分10
42秒前
青水完成签到 ,获得积分10
43秒前
44秒前
量子星尘发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助10
54秒前
lorentzh完成签到,获得积分10
56秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
在水一方应助King16采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
科研摆渡人完成签到,获得积分10
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
King16发布了新的文献求助10
1分钟前
凌泉完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764867
求助须知:如何正确求助?哪些是违规求助? 5555863
关于积分的说明 15406689
捐赠科研通 4899790
什么是DOI,文献DOI怎么找? 2635997
邀请新用户注册赠送积分活动 1584181
关于科研通互助平台的介绍 1539489