<i>Ab initio</i> phonon transport across grain boundaries in graphene using machine learning based on small dataset

石墨烯 声子 材料科学 从头算 位错 晶界 密度泛函理论 热导率 原子间势 凝聚态物理 机器学习 计算机科学 分子动力学 纳米技术 微观结构 量子力学 物理 复合材料 冶金
作者
Amirreza Hashemi,Rui-qiang Guo,Keivan Esfarjani,Sangyeop Lee
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (4)
标识
DOI:10.1103/physrevmaterials.6.044004
摘要

Establishing the structure-property relationship for grain boundaries (GBs) is critical for developing next-generation functional materials but has been severely hampered due to its extremely large configurational space. Atomistic simulations with low computational cost and high predictive power are strongly desirable, but the conventional simulations using empirical interatomic potentials and density functional theory suffer from the lack of predictive power and high computational cost, respectively. A machine learning interatomic potential (MLIP) recently emerged but often requires extensive size of the training dataset, making it a less feasible approach. Here, we demonstrate that an MLIP trained with a rationally designed small training dataset can predict thermal transport across GBs in graphene with ab initio accuracy at an affordable computational cost. We employed a rational approach based on the structural unit model to find a small set of GBs that can represent the entire configurational space and thus can serve as a cost-effective training dataset for the MLIP. Only 5 GBs were found to be enough to represent the entire configurational space of graphene GBs. Using the atomistic Green's function approach and the MLIP, we revealed that the structure-thermal resistance relation in graphene does not follow the common understanding that large dislocation density causes larger thermal resistance. In fact, thermal resistance is nearly independent of dislocation density at room temperature and is higher when the dislocation density is small at sub-room temperature. We explain this intriguing behavior with the buckling near a GB causing a strong scattering of flexural phonon modes. In this paper, we show that a machine learning technique combined with conventional wisdom (e.g., structural unit model) can extend the recent success of ab initio thermal transport simulation, which has been mostly limited to single crystals, to complex yet practically important polycrystals with GBs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温软完成签到 ,获得积分10
1秒前
大胆的自行车完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
煲煲煲仔饭完成签到 ,获得积分10
8秒前
汐颜紫雨完成签到,获得积分10
10秒前
wing完成签到 ,获得积分10
12秒前
002完成签到,获得积分0
16秒前
weng完成签到,获得积分10
16秒前
mike2012完成签到 ,获得积分10
18秒前
yy完成签到 ,获得积分10
20秒前
研友_GZ3zRn完成签到 ,获得积分0
22秒前
hhh完成签到 ,获得积分10
24秒前
眰晌完成签到 ,获得积分10
24秒前
EMC应助三伏天采纳,获得10
24秒前
量子星尘发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
Legend发布了新的文献求助10
33秒前
神奇五子棋完成签到 ,获得积分10
34秒前
yinyin完成签到 ,获得积分10
35秒前
36秒前
TGU的小马同学完成签到 ,获得积分10
38秒前
风风风风发布了新的文献求助10
40秒前
waynechang完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
46秒前
说如果完成签到 ,获得积分10
49秒前
番茄豆丁完成签到 ,获得积分10
51秒前
LFZ完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
53秒前
文与武完成签到 ,获得积分10
53秒前
我是老大应助风风风风采纳,获得10
53秒前
无私雅柏完成签到 ,获得积分10
53秒前
她的城完成签到,获得积分0
54秒前
54秒前
59秒前
003完成签到,获得积分0
59秒前
Jasper应助Legend采纳,获得10
1分钟前
zw发布了新的文献求助10
1分钟前
wanci应助海风采纳,获得10
1分钟前
奔跑的青霉素完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671559
求助须知:如何正确求助?哪些是违规求助? 4919724
关于积分的说明 15134997
捐赠科研通 4830375
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540671
关于科研通互助平台的介绍 1498971