<i>Ab initio</i> phonon transport across grain boundaries in graphene using machine learning based on small dataset

石墨烯 声子 材料科学 从头算 位错 晶界 密度泛函理论 热导率 原子间势 凝聚态物理 机器学习 计算机科学 分子动力学 纳米技术 微观结构 量子力学 物理 复合材料 冶金
作者
Amirreza Hashemi,Rui-qiang Guo,Keivan Esfarjani,Sangyeop Lee
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (4)
标识
DOI:10.1103/physrevmaterials.6.044004
摘要

Establishing the structure-property relationship for grain boundaries (GBs) is critical for developing next-generation functional materials but has been severely hampered due to its extremely large configurational space. Atomistic simulations with low computational cost and high predictive power are strongly desirable, but the conventional simulations using empirical interatomic potentials and density functional theory suffer from the lack of predictive power and high computational cost, respectively. A machine learning interatomic potential (MLIP) recently emerged but often requires extensive size of the training dataset, making it a less feasible approach. Here, we demonstrate that an MLIP trained with a rationally designed small training dataset can predict thermal transport across GBs in graphene with ab initio accuracy at an affordable computational cost. We employed a rational approach based on the structural unit model to find a small set of GBs that can represent the entire configurational space and thus can serve as a cost-effective training dataset for the MLIP. Only 5 GBs were found to be enough to represent the entire configurational space of graphene GBs. Using the atomistic Green's function approach and the MLIP, we revealed that the structure-thermal resistance relation in graphene does not follow the common understanding that large dislocation density causes larger thermal resistance. In fact, thermal resistance is nearly independent of dislocation density at room temperature and is higher when the dislocation density is small at sub-room temperature. We explain this intriguing behavior with the buckling near a GB causing a strong scattering of flexural phonon modes. In this paper, we show that a machine learning technique combined with conventional wisdom (e.g., structural unit model) can extend the recent success of ab initio thermal transport simulation, which has been mostly limited to single crystals, to complex yet practically important polycrystals with GBs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逃跑的想表白的你猜完成签到,获得积分10
2秒前
大个应助Chris采纳,获得10
3秒前
吃吃吃不敢吃完成签到 ,获得积分10
3秒前
tang发布了新的文献求助10
4秒前
4秒前
恐龙猪大王完成签到,获得积分10
5秒前
满意曼荷完成签到,获得积分10
5秒前
5秒前
小贾发布了新的文献求助10
5秒前
6秒前
ll发布了新的文献求助30
6秒前
vadfdfb完成签到,获得积分10
6秒前
geg发布了新的文献求助30
6秒前
Akim应助失眠的血茗采纳,获得10
6秒前
7秒前
hehe完成签到,获得积分10
8秒前
8秒前
8秒前
wanci应助Jared采纳,获得10
9秒前
Pomelo发布了新的文献求助10
9秒前
10秒前
Anne发布了新的文献求助30
10秒前
Jason发布了新的文献求助10
10秒前
11秒前
夏d发布了新的文献求助10
11秒前
Aireen发布了新的文献求助10
11秒前
星辰大海应助甘楽采纳,获得10
12秒前
12秒前
Ava应助yuhan采纳,获得10
12秒前
12秒前
远远完成签到 ,获得积分10
13秒前
13秒前
14秒前
御座完成签到 ,获得积分10
14秒前
Ccc完成签到,获得积分10
14秒前
14秒前
clear发布了新的文献求助10
15秒前
科研通AI6应助陈cxz采纳,获得10
16秒前
achilles发布了新的文献求助10
16秒前
超帅孱发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656