<i>Ab initio</i> phonon transport across grain boundaries in graphene using machine learning based on small dataset

石墨烯 声子 材料科学 从头算 位错 晶界 密度泛函理论 热导率 原子间势 凝聚态物理 机器学习 计算机科学 分子动力学 纳米技术 微观结构 量子力学 物理 复合材料 冶金
作者
Amirreza Hashemi,Rui-qiang Guo,Keivan Esfarjani,Sangyeop Lee
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (4)
标识
DOI:10.1103/physrevmaterials.6.044004
摘要

Establishing the structure-property relationship for grain boundaries (GBs) is critical for developing next-generation functional materials but has been severely hampered due to its extremely large configurational space. Atomistic simulations with low computational cost and high predictive power are strongly desirable, but the conventional simulations using empirical interatomic potentials and density functional theory suffer from the lack of predictive power and high computational cost, respectively. A machine learning interatomic potential (MLIP) recently emerged but often requires extensive size of the training dataset, making it a less feasible approach. Here, we demonstrate that an MLIP trained with a rationally designed small training dataset can predict thermal transport across GBs in graphene with ab initio accuracy at an affordable computational cost. We employed a rational approach based on the structural unit model to find a small set of GBs that can represent the entire configurational space and thus can serve as a cost-effective training dataset for the MLIP. Only 5 GBs were found to be enough to represent the entire configurational space of graphene GBs. Using the atomistic Green's function approach and the MLIP, we revealed that the structure-thermal resistance relation in graphene does not follow the common understanding that large dislocation density causes larger thermal resistance. In fact, thermal resistance is nearly independent of dislocation density at room temperature and is higher when the dislocation density is small at sub-room temperature. We explain this intriguing behavior with the buckling near a GB causing a strong scattering of flexural phonon modes. In this paper, we show that a machine learning technique combined with conventional wisdom (e.g., structural unit model) can extend the recent success of ab initio thermal transport simulation, which has been mostly limited to single crystals, to complex yet practically important polycrystals with GBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2032jia应助waiting采纳,获得10
刚刚
大个应助waiting采纳,获得10
刚刚
隐形曼青应助斯文的翠阳采纳,获得10
刚刚
文献狂人发布了新的文献求助10
刚刚
1秒前
LKX关注了科研通微信公众号
1秒前
zhangyiyang发布了新的文献求助10
1秒前
俊逸初瑶发布了新的文献求助10
2秒前
2秒前
你在说神马完成签到 ,获得积分10
2秒前
Rubby举报兴奋觅夏求助涉嫌违规
3秒前
米诺子完成签到,获得积分10
3秒前
3秒前
3秒前
wj完成签到,获得积分10
3秒前
gfdsh发布了新的文献求助10
4秒前
冻冻妖完成签到,获得积分10
4秒前
爱吃饼干的土拨鼠完成签到,获得积分10
4秒前
不系舟完成签到,获得积分10
4秒前
IVY1300发布了新的文献求助10
5秒前
zj完成签到,获得积分10
6秒前
残酷的风完成签到,获得积分10
6秒前
11发布了新的文献求助10
7秒前
协奏曲完成签到 ,获得积分10
7秒前
SWW关注了科研通微信公众号
7秒前
Song完成签到,获得积分10
7秒前
我是老大应助唠叨的又菡采纳,获得10
7秒前
8秒前
8秒前
dan1029发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
杨111完成签到 ,获得积分10
9秒前
cc完成签到 ,获得积分10
9秒前
9秒前
斯文败类应助王继刚采纳,获得10
10秒前
11秒前
拼搏的路灯完成签到,获得积分20
11秒前
11秒前
叶子完成签到 ,获得积分10
12秒前
肖耶啵完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763