<i>Ab initio</i> phonon transport across grain boundaries in graphene using machine learning based on small dataset

石墨烯 声子 材料科学 从头算 位错 晶界 密度泛函理论 热导率 原子间势 凝聚态物理 机器学习 计算机科学 分子动力学 纳米技术 微观结构 量子力学 物理 复合材料 冶金
作者
Amirreza Hashemi,Rui-qiang Guo,Keivan Esfarjani,Sangyeop Lee
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:6 (4)
标识
DOI:10.1103/physrevmaterials.6.044004
摘要

Establishing the structure-property relationship for grain boundaries (GBs) is critical for developing next-generation functional materials but has been severely hampered due to its extremely large configurational space. Atomistic simulations with low computational cost and high predictive power are strongly desirable, but the conventional simulations using empirical interatomic potentials and density functional theory suffer from the lack of predictive power and high computational cost, respectively. A machine learning interatomic potential (MLIP) recently emerged but often requires extensive size of the training dataset, making it a less feasible approach. Here, we demonstrate that an MLIP trained with a rationally designed small training dataset can predict thermal transport across GBs in graphene with ab initio accuracy at an affordable computational cost. We employed a rational approach based on the structural unit model to find a small set of GBs that can represent the entire configurational space and thus can serve as a cost-effective training dataset for the MLIP. Only 5 GBs were found to be enough to represent the entire configurational space of graphene GBs. Using the atomistic Green's function approach and the MLIP, we revealed that the structure-thermal resistance relation in graphene does not follow the common understanding that large dislocation density causes larger thermal resistance. In fact, thermal resistance is nearly independent of dislocation density at room temperature and is higher when the dislocation density is small at sub-room temperature. We explain this intriguing behavior with the buckling near a GB causing a strong scattering of flexural phonon modes. In this paper, we show that a machine learning technique combined with conventional wisdom (e.g., structural unit model) can extend the recent success of ab initio thermal transport simulation, which has been mostly limited to single crystals, to complex yet practically important polycrystals with GBs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yalin完成签到,获得积分10
1秒前
喻初原发布了新的文献求助10
1秒前
1秒前
挪威的森林完成签到,获得积分10
2秒前
洺全完成签到,获得积分10
3秒前
酷波er应助周全采纳,获得10
3秒前
shipcap完成签到,获得积分20
4秒前
ZSZ完成签到,获得积分10
4秒前
整齐的冰珍完成签到,获得积分10
5秒前
英姑应助yk采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
LUMOS完成签到,获得积分10
7秒前
Jared完成签到,获得积分0
7秒前
张涛完成签到,获得积分10
7秒前
MrRaBB完成签到 ,获得积分10
8秒前
等待黎明完成签到,获得积分10
8秒前
8秒前
9秒前
无尘发布了新的文献求助10
9秒前
咪咪完成签到,获得积分10
10秒前
周志友完成签到,获得积分10
10秒前
无语的从彤完成签到,获得积分10
10秒前
10秒前
靓丽的采白完成签到,获得积分10
10秒前
小小小小鸟完成签到,获得积分10
10秒前
欢呼的巧蕊完成签到,获得积分10
10秒前
无花果应助欣慰的以蕊采纳,获得10
10秒前
尼i完成签到,获得积分10
11秒前
jjwen完成签到 ,获得积分10
11秒前
kaosxy发布了新的文献求助10
11秒前
12秒前
12秒前
搜集达人应助zhaoxu采纳,获得10
12秒前
quasar完成签到,获得积分10
12秒前
12秒前
chilin发布了新的文献求助10
13秒前
帅气的东蒽完成签到,获得积分10
13秒前
LI完成签到,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197