Assessing Emotional Responses to the Spatial Quality of Urban Green Spaces through Self-Report and Face Recognition Measures

价(化学) 感知 心理学 比例(比率) 质量(理念) 应用心理学 认知心理学 地理 地图学 量子力学 认识论 物理 哲学 神经科学
作者
Qiao Lin,Jingwei Zhuang,Xuan Zhang,Yang Su,Yiping Xia
出处
期刊:International Journal of Environmental Research and Public Health [MDPI AG]
卷期号:18 (16): 8526-8526 被引量:10
标识
DOI:10.3390/ijerph18168526
摘要

Although creating a high-quality urban green space (UGS) is of considerable importance in public health, few studies have used individuals’ emotions to evaluate the UGS quality. This study aims to conduct a multidimensional emotional assessment method of UGS from the perspective of spatial quality. Panoramic videos of 15 scenes in the West Lake Scenic Area were displayed to 34 participants. For each scene, 12 attributes regarding spatial quality were quantified, including perceived plant attributes, spatial structure attributes, and experiences of UGS. Then, the Self-Assessment-Manikin (SAM) scale and face recognition model were used to measure people’s valence-arousal emotion values. Among all the predictors, the percentages of water and plants were the most predictive indicators of emotional responses measured by SAM scale, while the interpretation rate of the model measured by face recognition was insufficiently high. Concerning gender differences, women experienced a significantly higher valence than men. Higher percentages of water and plants, larger sizes, approximate shape index, and lower canopy densities were often related to positive emotions. Hence, designers must consider all structural attributes of green spaces, as well as enrich visual perception and provide various activities while creating a UGS. In addition, we suggest combining both physiological and psychological methods to assess emotional responses in future studies. Because the face recognition model can provide objective measurement of emotional responses, and the self-report questionnaire is much easier to administer and can be used as a supplement.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝桥兰灯完成签到,获得积分10
刚刚
踏实的语山完成签到 ,获得积分10
刚刚
1秒前
Akim应助穆独采纳,获得10
1秒前
英吉利25发布了新的文献求助10
1秒前
3秒前
4秒前
feng发布了新的文献求助10
5秒前
彩虹发布了新的文献求助10
6秒前
wuchang完成签到,获得积分10
7秒前
万能图书馆应助mou采纳,获得10
9秒前
冷静新瑶发布了新的文献求助10
9秒前
9秒前
11秒前
吴少华发布了新的文献求助10
13秒前
lessio发布了新的文献求助10
14秒前
14秒前
15秒前
aaa完成签到,获得积分20
15秒前
852应助zzz采纳,获得10
17秒前
Cholera完成签到,获得积分10
17秒前
果粒登完成签到 ,获得积分10
17秒前
Okra应助JokerSkye采纳,获得20
17秒前
英吉利25发布了新的文献求助10
21秒前
旭旭发布了新的文献求助10
21秒前
天行马发布了新的文献求助10
24秒前
呼啦啦发布了新的文献求助10
28秒前
快乐的薯片完成签到 ,获得积分10
29秒前
斯文败类应助风趣青槐采纳,获得10
31秒前
831143完成签到 ,获得积分0
32秒前
淡然寄瑶完成签到 ,获得积分10
33秒前
殷勤的紫槐应助吴雨胡采纳,获得200
34秒前
鲸与海完成签到,获得积分10
38秒前
40秒前
41秒前
完美世界应助王二毛采纳,获得10
41秒前
每天100次完成签到,获得积分10
41秒前
Jack完成签到 ,获得积分10
42秒前
滴滴滴滴滴滴滴关注了科研通微信公众号
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869512
求助须知:如何正确求助?哪些是违规求助? 6452759
关于积分的说明 15661217
捐赠科研通 4985301
什么是DOI,文献DOI怎么找? 2688385
邀请新用户注册赠送积分活动 1630817
关于科研通互助平台的介绍 1588894