Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals

计算机科学 自编码 异常检测 自回归模型 深度学习 人工智能 模式识别(心理学) 数据建模 卷积神经网络 时间序列 无监督学习 多元统计 数据挖掘 机器学习 系列(地层学) 计量经济学 古生物学 生物 数据库 经济
作者
Yuxin Zhang,Yiqiang Chen,Jindong Wang,Zhiwen Pan
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:152
标识
DOI:10.1109/tkde.2021.3102110
摘要

Nowadays, multi-sensor technologies are applied in many fields, e.g., Health Care (HC), Human Activity Recognition (HAR), and Industrial Control System (ICS). These sensors can generate a substantial amount of multivariate time-series data. Unsupervised anomaly detection on multi-sensor time-series data has been proven critical in machine learning researches. The key challenge is to discover generalized normal patterns by capturing spatial-temporal correlation in multi-sensor data. Beyond this challenge, the noisy data is often intertwined with the training data, which is likely to mislead the model by making it hard to distinguish between the normal, abnormal, and noisy data. Few of previous researches can jointly address these two challenges. In this paper, we propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M). We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD) to better distinguish between the noisy, normal, and abnormal data. Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bidirectional LSTM with Attention) to capture temporal dependence from time-series data. Finally, CAE-M jointly optimizes these two subnetworks. We empirically compare the proposed approach with several state-of-the-art anomaly detection methods on HAR and HC datasets. Experimental results demonstrate that our proposed model outperforms these existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老王爱学习完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
Kia发布了新的文献求助30
3秒前
GUKGO完成签到,获得积分10
4秒前
limerence完成签到,获得积分10
4秒前
汉堡包应助风轩轩采纳,获得10
4秒前
林深时见鹿完成签到,获得积分10
4秒前
4秒前
13发布了新的文献求助30
5秒前
5秒前
orixero应助清爽朋友采纳,获得10
5秒前
凡人完成签到,获得积分10
6秒前
爆米花应助坚强水杯采纳,获得100
6秒前
shenyanlei发布了新的文献求助10
6秒前
欢喜大地发布了新的文献求助10
6秒前
Spencer发布了新的文献求助30
6秒前
随便发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
DTS发布了新的文献求助10
9秒前
9秒前
1851611453完成签到 ,获得积分10
10秒前
刘丰铭发布了新的文献求助10
10秒前
SciGPT应助jhonnyhuang采纳,获得10
10秒前
10秒前
12秒前
sunshine完成签到,获得积分10
12秒前
风清扬发布了新的文献求助10
12秒前
科研通AI6应助结实的栾采纳,获得10
12秒前
AskNature完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802