Measurement and analysis of regional flood disaster resilience based on a support vector regression model refined by the selfish herd optimizer with elite opposition-based learning

大洪水 支持向量机 回归分析 环境资源管理 计算机科学 地理 计量经济学 环境科学 统计 数学 机器学习 考古
作者
Dong Liu,Chunqing Wang,Yi Ji,Qiang Fu,Mo Li,Shoaib Ali,Tianxiao Li,Song Cui
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:300: 113764-113764 被引量:21
标识
DOI:10.1016/j.jenvman.2021.113764
摘要

Flood disasters are sudden, frequent, uncertain and highly hazardous natural disasters. The precise identification of the spatiotemporal evolution characteristics, key driving factors and influencing mechanisms of resilience has become a hot spot in disaster risk reduction research. Therefore, the cumulative information contribution rate-Pearson correlation coefficient (CICR- PCC) model is used in this paper to construct a flood disaster resilience index system by quantitative methods, and a support vector regression model refined by the selfish herd optimizer with elite opposition-based learning (EO-SHO-SVR) is built to improve the accuracy of flood disaster resilience evaluation. On this basis, the EO-SHO-SVR model is used to analyze the spatiotemporal evolution of flood disaster resilience in the Jiansanjiang branch of China Beidahuang Agricultural Reclamation Group Co., Ltd. over the past 22 years. In addition, to verify the comprehensive performance of the EO-SHO-SVR model, support vector regression (SVR), imperial competition algorithm-improved support vector regression (ICA-SVR), and unimproved selfish herd optimizer support vector regression (SHO-SVR) models were selected for comparative analysis. The results show that during the study period, the resilience levels reached a plateau of high levels from 1997 to 2018 after experiencing a state of steady low levels followed by increased volatility. Among the investigated factors, land-average flood prevention investment, GDP per capita, agricultural machinery power per unit of arable land, water conservancy project investment as a percentage of GDP, and rainfall are the main driving factors that cause spatiotemporal differences in flood disaster resilience in the study area. Spatially, the resilience levels in the Jiansanjiang branch are ordered as northern farms > southern farms > central farms, and the comprehensive index of resilience shows an increasing trend from west to east. In the model comparison, the EO-SHO-SVR model has outstanding advantages in fitting performance, reliability, rationality and stability, which fully demonstrates that the EO-SHO-SVR model is highly advanced and practical in the measurement of flood disaster resilience. These research results can provide a more accurate evaluation model of regional flood disaster resilience. In addition, they can also provide valuable information for regional flood resilience improvement and flood risk avoidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛豆应助狂野绿竹采纳,获得10
刚刚
隐形曼青应助124332采纳,获得10
刚刚
今后应助124332采纳,获得10
刚刚
小马甲应助124332采纳,获得10
刚刚
Ava应助小点点采纳,获得10
刚刚
桐桐应助124332采纳,获得10
1秒前
bkagyin应助124332采纳,获得10
1秒前
所所应助124332采纳,获得10
1秒前
NexusExplorer应助124332采纳,获得10
1秒前
Lucas应助124332采纳,获得10
1秒前
善学以致用应助124332采纳,获得30
1秒前
JamesPei应助124332采纳,获得10
1秒前
1秒前
2秒前
3秒前
大个应助预则立采纳,获得10
3秒前
3秒前
Zhong完成签到,获得积分20
4秒前
4秒前
冲鸭完成签到,获得积分10
4秒前
萌~Lucky发布了新的文献求助10
6秒前
6秒前
吃玉米长大的马铃薯关注了科研通微信公众号
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
高贵毛巾发布了新的文献求助100
8秒前
8秒前
67完成签到,获得积分10
8秒前
9秒前
9秒前
天天快乐应助wang采纳,获得10
9秒前
10秒前
10秒前
爱学习的向日葵完成签到,获得积分10
11秒前
满增明发布了新的文献求助10
11秒前
搜集达人应助雪白的采白采纳,获得10
11秒前
bkagyin应助ccc采纳,获得10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302046
求助须知:如何正确求助?哪些是违规求助? 2936566
关于积分的说明 8478154
捐赠科研通 2610354
什么是DOI,文献DOI怎么找? 1425128
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646465