Measurement and analysis of regional flood disaster resilience based on a support vector regression model refined by the selfish herd optimizer with elite opposition-based learning

大洪水 支持向量机 回归分析 环境资源管理 计算机科学 地理 计量经济学 环境科学 统计 数学 机器学习 考古
作者
Dong Liu,Chunqing Wang,Yi Ji,Qiang Fu,Mo Li,Shoaib Ali,Tianxiao Li,Song Cui
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:300: 113764-113764 被引量:21
标识
DOI:10.1016/j.jenvman.2021.113764
摘要

Flood disasters are sudden, frequent, uncertain and highly hazardous natural disasters. The precise identification of the spatiotemporal evolution characteristics, key driving factors and influencing mechanisms of resilience has become a hot spot in disaster risk reduction research. Therefore, the cumulative information contribution rate-Pearson correlation coefficient (CICR- PCC) model is used in this paper to construct a flood disaster resilience index system by quantitative methods, and a support vector regression model refined by the selfish herd optimizer with elite opposition-based learning (EO-SHO-SVR) is built to improve the accuracy of flood disaster resilience evaluation. On this basis, the EO-SHO-SVR model is used to analyze the spatiotemporal evolution of flood disaster resilience in the Jiansanjiang branch of China Beidahuang Agricultural Reclamation Group Co., Ltd. over the past 22 years. In addition, to verify the comprehensive performance of the EO-SHO-SVR model, support vector regression (SVR), imperial competition algorithm-improved support vector regression (ICA-SVR), and unimproved selfish herd optimizer support vector regression (SHO-SVR) models were selected for comparative analysis. The results show that during the study period, the resilience levels reached a plateau of high levels from 1997 to 2018 after experiencing a state of steady low levels followed by increased volatility. Among the investigated factors, land-average flood prevention investment, GDP per capita, agricultural machinery power per unit of arable land, water conservancy project investment as a percentage of GDP, and rainfall are the main driving factors that cause spatiotemporal differences in flood disaster resilience in the study area. Spatially, the resilience levels in the Jiansanjiang branch are ordered as northern farms > southern farms > central farms, and the comprehensive index of resilience shows an increasing trend from west to east. In the model comparison, the EO-SHO-SVR model has outstanding advantages in fitting performance, reliability, rationality and stability, which fully demonstrates that the EO-SHO-SVR model is highly advanced and practical in the measurement of flood disaster resilience. These research results can provide a more accurate evaluation model of regional flood disaster resilience. In addition, they can also provide valuable information for regional flood resilience improvement and flood risk avoidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小嘛发布了新的文献求助10
刚刚
刚刚
刚刚
浮游应助蓝天0812采纳,获得10
1秒前
2秒前
3秒前
Qz完成签到,获得积分10
5秒前
花开富贵发布了新的文献求助10
5秒前
阔达的秀发完成签到,获得积分10
6秒前
hxh发布了新的文献求助10
7秒前
一个西藏发布了新的文献求助10
7秒前
fyukgfdyifotrf完成签到,获得积分10
8秒前
8秒前
dovehanguoge完成签到,获得积分20
9秒前
9秒前
思源应助徐乐采纳,获得10
9秒前
科研通AI6应助www采纳,获得10
10秒前
qian发布了新的文献求助10
10秒前
11秒前
赘婿应助123采纳,获得10
12秒前
14秒前
clover发布了新的文献求助10
14秒前
yyy关注了科研通微信公众号
16秒前
科研通AI6应助Sieg采纳,获得10
16秒前
Mito2009完成签到,获得积分10
17秒前
所所应助企鹅没烦恼采纳,获得10
17秒前
kk发布了新的文献求助10
17秒前
852应助LaLune采纳,获得10
17秒前
17秒前
18秒前
Damon完成签到,获得积分10
18秒前
song发布了新的文献求助10
18秒前
20秒前
23秒前
斯文败类应助NeilJW采纳,获得10
24秒前
斯文败类应助小巧的若云采纳,获得10
25秒前
脑洞疼应助一介书生采纳,获得10
25秒前
27秒前
LaLune发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355546
求助须知:如何正确求助?哪些是违规求助? 4487473
关于积分的说明 13970113
捐赠科研通 4388096
什么是DOI,文献DOI怎么找? 2410888
邀请新用户注册赠送积分活动 1403438
关于科研通互助平台的介绍 1376951