Measurement and analysis of regional flood disaster resilience based on a support vector regression model refined by the selfish herd optimizer with elite opposition-based learning

大洪水 支持向量机 回归分析 环境资源管理 计算机科学 地理 计量经济学 环境科学 统计 数学 机器学习 考古
作者
Dong Liu,Chunqing Wang,Yi Ji,Qiang Fu,Mo Li,Shoaib Ali,Tianxiao Li,Song Cui
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:300: 113764-113764 被引量:21
标识
DOI:10.1016/j.jenvman.2021.113764
摘要

Flood disasters are sudden, frequent, uncertain and highly hazardous natural disasters. The precise identification of the spatiotemporal evolution characteristics, key driving factors and influencing mechanisms of resilience has become a hot spot in disaster risk reduction research. Therefore, the cumulative information contribution rate-Pearson correlation coefficient (CICR- PCC) model is used in this paper to construct a flood disaster resilience index system by quantitative methods, and a support vector regression model refined by the selfish herd optimizer with elite opposition-based learning (EO-SHO-SVR) is built to improve the accuracy of flood disaster resilience evaluation. On this basis, the EO-SHO-SVR model is used to analyze the spatiotemporal evolution of flood disaster resilience in the Jiansanjiang branch of China Beidahuang Agricultural Reclamation Group Co., Ltd. over the past 22 years. In addition, to verify the comprehensive performance of the EO-SHO-SVR model, support vector regression (SVR), imperial competition algorithm-improved support vector regression (ICA-SVR), and unimproved selfish herd optimizer support vector regression (SHO-SVR) models were selected for comparative analysis. The results show that during the study period, the resilience levels reached a plateau of high levels from 1997 to 2018 after experiencing a state of steady low levels followed by increased volatility. Among the investigated factors, land-average flood prevention investment, GDP per capita, agricultural machinery power per unit of arable land, water conservancy project investment as a percentage of GDP, and rainfall are the main driving factors that cause spatiotemporal differences in flood disaster resilience in the study area. Spatially, the resilience levels in the Jiansanjiang branch are ordered as northern farms > southern farms > central farms, and the comprehensive index of resilience shows an increasing trend from west to east. In the model comparison, the EO-SHO-SVR model has outstanding advantages in fitting performance, reliability, rationality and stability, which fully demonstrates that the EO-SHO-SVR model is highly advanced and practical in the measurement of flood disaster resilience. These research results can provide a more accurate evaluation model of regional flood disaster resilience. In addition, they can also provide valuable information for regional flood resilience improvement and flood risk avoidance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
by完成签到 ,获得积分20
刚刚
研友_EZ1KkL完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
0009987完成签到,获得积分10
2秒前
2秒前
ding应助月不笑采纳,获得10
2秒前
suohaiyun发布了新的文献求助10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
小宋发布了新的文献求助10
3秒前
大个应助科研通管家采纳,获得30
3秒前
吃人陈发布了新的文献求助10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
liuchengrui应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
kagaminelen完成签到,获得积分10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
mengtingmei应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
xdd完成签到,获得积分10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791