Intelligent analysis of maleic hydrazide using a simple electrochemical sensor coupled with machine learning

人工智能 材料科学 计算机科学 电极 生物系统 化学 算法 支持向量机 生物 物理化学
作者
Lulu Xu,Ruimei Wu,Xiaoyu Zhu,Xiaoqiang Wang,Xiang Geng,Yao Xiong,Tao Chen,Yangping Wen,Shirong Ai
出处
期刊:Analytical Methods [The Royal Society of Chemistry]
卷期号:13 (39): 4662-4673 被引量:25
标识
DOI:10.1039/d1ay01261d
摘要

A simple electrochemical sensing platform based on a low-cost disposable laser-induced porous graphene (LIPG) flexible electrode for the intelligent analysis of maleic hydrazide (MH) in potatoes and peanuts coupled with machine learning (ML) was successfully designed. The LIPG electrode was patterned by a simple one-step laser-induced procedure on commercial polyimide film using a computer-controlled direct laser writing micromachining system and displayed excellent flexibility, 3D porous structure, large specific surface area, and preferable conductivity. A data partitioning technique was proposed for the optimal MH concentration ranges by selecting the size of datasets, including the size of the training set and the size of the test set combined with the performance metrics of ML models. Different algorithms such as artificial neural networks (ANN), random forest (RF), and least squares support vector machine (LS-SVM) were selected to build the ML models. Three ML models were evaluated, and the LS-SVM model displayed unique superiority. Both the recoveries and RSD of practical application were further measured to assess the feasibility of the selected LS-SVM model. This will have important theoretical and practical significance for the intelligent analysis of harmful residuals in agro-product safety using an electrochemical sensing platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13679165979发布了新的文献求助10
刚刚
温暖的钻石完成签到,获得积分10
刚刚
科研通AI5应助赖道之采纳,获得10
刚刚
1秒前
苏卿应助Eric采纳,获得10
1秒前
思源应助hhzz采纳,获得10
2秒前
红红完成签到,获得积分10
5秒前
瑶一瑶发布了新的文献求助10
5秒前
NexusExplorer应助刘鹏宇采纳,获得10
5秒前
roselau完成签到,获得积分10
5秒前
yudandan@CJLU完成签到,获得积分10
6秒前
6秒前
半山完成签到,获得积分10
10秒前
吹泡泡的红豆完成签到 ,获得积分10
11秒前
研友_89eBO8完成签到 ,获得积分10
11秒前
隐形曼青应助ZeJ采纳,获得10
11秒前
11秒前
隐形曼青应助温暖的钻石采纳,获得10
12秒前
Khr1stINK发布了新的文献求助10
13秒前
123cxj发布了新的文献求助10
14秒前
星辰大海应助红红采纳,获得10
14秒前
sweetbearm应助小周采纳,获得10
15秒前
科研通AI5应助赖道之采纳,获得10
15秒前
16秒前
HonamC完成签到,获得积分10
17秒前
十三十四十五完成签到,获得积分10
18秒前
潇洒的问夏完成签到 ,获得积分10
20秒前
无声瀑布完成签到,获得积分10
20秒前
Bingtao_Lian完成签到 ,获得积分10
21秒前
小布丁完成签到 ,获得积分10
21秒前
竹筏过海应助季生采纳,获得30
22秒前
23秒前
buno应助22采纳,获得10
24秒前
赘婿应助TT采纳,获得10
25秒前
25秒前
25秒前
26秒前
Jenny应助赖道之采纳,获得10
28秒前
依古比古完成签到 ,获得积分10
30秒前
汎影发布了新的文献求助10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808