衍射
飞秒
半径
高斯光束
纳米颗粒
旋涡
光学
纳米尺度
光学镊子
纳米技术
材料科学
旋转(数学)
非线性光学
涡流
长度刻度
梁(结构)
物理
激光器
机械
计算机科学
人工智能
计算机安全
作者
Yaqiang Qin,Lei‐Ming Zhou,Lu Huang,Yunfeng Jin,Hao Shi,Shali Shi,Honglian Guo,Liantuan Xiao,Yuanjie Yang,Cheng‐Wei Qiu,Yuqiang Jiang
标识
DOI:10.1038/s41467-021-24100-0
摘要
Abstract The ability of light beams to rotate nano-objects has important applications in optical micromachines and biotechnology. However, due to the diffraction limit, it is challenging to rotate nanoparticles at subwavelength scale. Here, we propose a method to obtain controlled fast orbital rotation (i.e., circumgyration) at deep subwavelength scale, based on the nonlinear optical effect rather than sub-diffraction focusing. We experimentally demonstrate rotation of metallic nanoparticles with orbital radius of 71 nm, to our knowledge, the smallest orbital radius obtained by optical trapping thus far. The circumgyration frequency of particles in water can be more than 1 kHz. In addition, we use a femtosecond pulsed Gaussian beam rather than vortex beams in the experiment. Our study provides paradigms for nanoparticle manipulation beyond the diffraction limit, which will not only push toward possible applications in optically driven nanomachines, but also spur more fascinating research in nano-rheology, micro-fluid mechanics and biological applications at the nanoscale.
科研通智能强力驱动
Strongly Powered by AbleSci AI