材料科学
硅酮
软机器人
复合材料
转移模塑
触觉传感器
纤维
压阻效应
计算机科学
机器人
人工智能
模具
作者
Antonia Georgopoulou,Silvain Michel,Frank Clemens
出处
期刊:Polymers
[MDPI AG]
日期:2021-04-10
卷期号:13 (8): 1226-1226
被引量:24
标识
DOI:10.3390/polym13081226
摘要
Soft robotics and flexible electronics are rising in popularity and can be used in many applications. However, there is still a need for processing routes that allow the upscaling in production for functional soft robotic parts in an industrial scale. In this study, injection molding of liquid silicone is suggested as a fabrication method for sensorized robotic skin based on sensor fiber composites. Sensor fibers based on thermoplastic elastomers with two different shore hardness (50A and 70A) are combined with different silicone materials. A mathematical model is used to predict the mechanical load transfer from the silicone matrix to the fiber and shows that the matrix of the lowest shore hardness should not be combined with the stiffer fiber. The sensor fiber composites are fixed on a 3D printed robotic finger. The sensorized robotic skin based on the composite with the 50A fiber in combination with pre-straining gives good sensor performance as well as a large elasticity. It is proposed that a miss-match in the mechanical properties between fiber sensor and matrix should be avoided in order to achieve low drift and relaxation. These findings can be used as guidelines for material selection for future sensor integrated soft robotic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI