MIPGAN—Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN

变形 计算机科学 身份(音乐) 面子(社会学概念) 人工智能 脆弱性(计算) 数字化 面部识别系统 计算机视觉 质量(理念) 模式识别(心理学) 计算机安全 哲学 社会学 物理 认识论 社会科学 声学
作者
Haoyu Zhang,Sushma Venkatesh,Raghavendra Ramachandra,Kiran Raja,Naser Damer,Christoph Busch
出处
期刊:IEEE transactions on biometrics, behavior, and identity science [Institute of Electrical and Electronics Engineers]
卷期号:3 (3): 365-383 被引量:60
标识
DOI:10.1109/tbiom.2021.3072349
摘要

Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high degree of facial resemblance. The success of morphing attacks is directly dependent on the quality of the generated morph images. We present a new approach for generating strong attacks extending our earlier framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network, which we refer to as MIPGAN (Morphing through Identity Prior driven GAN). The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed facial image with minimal artefacts and with high resolution. We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate of attacks. Extensive experiments are carried out to assess the FRS's vulnerability against the proposed morphed face generation technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after re-digitization from newly generated MIPGAN Face Morph Dataset. The obtained results demonstrate that the proposed approach of morph generation poses a high threat to FRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮嫣娆完成签到,获得积分10
刚刚
1秒前
Jasper应助慌慌采纳,获得10
1秒前
2秒前
俭朴尔竹发布了新的文献求助10
3秒前
研友_Zleb68完成签到,获得积分20
3秒前
谨慎笙关注了科研通微信公众号
4秒前
彩色草莓完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
Be-a rogue完成签到,获得积分10
7秒前
9秒前
9秒前
Niujy完成签到,获得积分10
11秒前
12秒前
柠小檬c发布了新的文献求助10
14秒前
英姑应助研友_Zleb68采纳,获得10
14秒前
15秒前
小秦完成签到,获得积分20
15秒前
16秒前
善学以致用应助小肥采纳,获得30
17秒前
温婉的不弱完成签到,获得积分10
18秒前
18秒前
ninomae完成签到 ,获得积分10
19秒前
19秒前
研友_Z1xbgn完成签到 ,获得积分20
22秒前
22秒前
领导范儿应助隐形静芙采纳,获得10
23秒前
谷雨秋发布了新的文献求助20
24秒前
24秒前
乐乐发布了新的文献求助10
24秒前
小蘑菇应助youtaixian采纳,获得10
25秒前
25秒前
ling完成签到 ,获得积分10
25秒前
拼搏的败发布了新的文献求助10
26秒前
沐沐应助shirelylee采纳,获得10
27秒前
小云发布了新的文献求助10
28秒前
爆米花应助柠小檬c采纳,获得30
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458734
求助须知:如何正确求助?哪些是违规求助? 3053505
关于积分的说明 9036831
捐赠科研通 2742695
什么是DOI,文献DOI怎么找? 1504509
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519