核糖核酸
死盒子
核糖核蛋白
细胞生物学
解旋酶
ATP酶
生物
古细菌
ATP水解
RNA解旋酶A
化学
生物化学
酶
基因
标识
DOI:10.1515/hsz-2020-0381
摘要
Abstract DEAD-box ATPase proteins are found in all clades of life and have been associated with a diverse array of RNA-processing reactions in eukaryotes, bacteria and archaea. Their highly conserved core enables them to bind RNA, often in an ATP-dependent manner. In the course of the ATP hydrolysis cycle, they undergo conformational rearrangements, which enable them to unwind short RNA duplexes or remodel RNA-protein complexes. Thus, they can function as RNA helicases or chaperones. However, when their conformation is locked, they can also clamp RNA and create ATP-dependent platforms for the formation of higher-order ribonucleoprotein complexes. Recently, it was shown that DEAD-box ATPases globally regulate the phase-separation behavior of RNA-protein complexes in vitro and control the dynamics of RNA-containing membraneless organelles in both pro- and eukaryotic cells. A role of these enzymes as regulators of RNA-protein condensates, or ‘condensases’, suggests a unifying view of how the biochemical activities of DEAD-box ATPases are used to keep cellular condensates dynamic and ‘alive’, and how they regulate the composition and fate of ribonucleoprotein complexes in different RNA processing steps.
科研通智能强力驱动
Strongly Powered by AbleSci AI