Fast detection and location of longan fruits using UAV images

计算机科学 人工智能 目标检测 卷积神经网络 计算机视觉 RGB颜色模型 预处理器 特征(语言学) 地形 特征提取 模式识别(心理学) 生态学 语言学 生物 哲学
作者
Denghui Li,Xiaoxuan Sun,Hamza Elkhouchlaa,Yuhang Jia,Zhongwei Yao,Pei-Yi Lin,Jun Li,Huazhong Lu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:190: 106465-106465 被引量:41
标识
DOI:10.1016/j.compag.2021.106465
摘要

In agriculture, fruit picking robots on the ground have difficulty adapting to the terrain conditions of mountain orchards and cannot pick longan fruit from tall longan trees. In this paper, aiming to allow picking of longan fruit by unmanned aerial vehicles (UAVs), a deep learning-based scheme to quickly and accurately detect and locate suitable picking points on fruit branches is proposed. The scheme includes a UAV fuzzy image preprocessing method, longan detection based on a convolutional neural network (CNN), red, green, blue and depth (RGB-D) information fusion and an accurate target location strategy. First, the UAV is equipped with an Intel Realsense D455 camera, which collects longan images from the front for training and testing the model. Second, the lightweight MobileNet backbone network is used to improve the performance of the You Only Look Once version 4 (YOLOv4) model in feature extraction. The results for the test set show that compared with the classical feature pyramid network (FPN), YOLOv3 and YOLOv4 models, this model reduces the computation, parameters and detection time of the model. Compared with MobileNet single-shot multibox detector (MobileNet-SSD) and YOLOv4-tiny, this model exhibits improved detection accuracy. Third, according to the target detection result map, a strategy is formulated to accurately determine the suitable picking point on the main branch of the result. Finally, the performance of the improved model and picking platform in the harvest scene is evaluated by performing picking experiments in a longan orchard. In summary, we fully exploit the advantages of the combination of UAVs, RGB-D cameras and CNNs to improve the speed and accuracy of target detection and location for longan picking by UAVs based on vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助1234采纳,获得10
刚刚
1秒前
ZQZ发布了新的文献求助10
2秒前
只喝白开水完成签到,获得积分10
2秒前
pluto应助Kevin采纳,获得50
2秒前
搜集达人应助虫子采纳,获得10
3秒前
皮本皮发布了新的文献求助10
3秒前
逃跑计划完成签到,获得积分10
3秒前
糖肉肉发布了新的文献求助10
3秒前
5秒前
学术飞舞完成签到,获得积分10
5秒前
where完成签到,获得积分10
6秒前
6秒前
孟繁荣发布了新的文献求助10
8秒前
在水一方应助皮本皮采纳,获得10
10秒前
何雨洋发布了新的文献求助10
10秒前
逃跑计划发布了新的文献求助10
10秒前
123456678完成签到,获得积分10
10秒前
烟花应助123采纳,获得10
11秒前
xs应助wm采纳,获得10
14秒前
思源应助杨树采纳,获得10
15秒前
斯文败类应助贪玩若剑采纳,获得10
15秒前
cjq完成签到,获得积分10
17秒前
17秒前
孟繁荣完成签到,获得积分10
18秒前
18秒前
19秒前
优秀的蜗牛完成签到,获得积分10
20秒前
21秒前
李爱国应助雪花采纳,获得10
21秒前
21秒前
22秒前
打打应助淡淡的雪采纳,获得10
22秒前
zqq123发布了新的文献求助10
23秒前
打打应助小王子采纳,获得10
24秒前
wjl发布了新的文献求助10
25秒前
搜集达人应助何雨洋采纳,获得10
27秒前
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514705
求助须知:如何正确求助?哪些是违规求助? 3097068
关于积分的说明 9233846
捐赠科研通 2792049
什么是DOI,文献DOI怎么找? 1532249
邀请新用户注册赠送积分活动 711846
科研通“疑难数据库(出版商)”最低求助积分说明 707032