Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Conditions

卷积神经网络 计算机科学 分类器(UML) 鉴别器 图形 模式识别(心理学) 数据挖掘 域适应 深度学习 领域(数学分析) 算法 机器学习 人工智能 理论计算机科学 数学 探测器 数学分析 电信
作者
Tianfu Li,Zhibin Zhao,Chuang Sun,Ruqiang Yan,Xuefeng Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-10 被引量:196
标识
DOI:10.1109/tim.2021.3075016
摘要

Unsupervised domain adaptation (UDA)-based methods have made great progress in mechanical fault diagnosis under variable working conditions. In UDA, three types of information, including class label, domain label, and data structure, are essential to bridging the labeled source domain and unlabeled target domain. However, most existing UDA-based methods use only the former two information and ignore the modeling of data structure, which make the information contained in the features extracted by the deep network incomplete. To tackle this issue, a domain adversarial graph convolutional network (DAGCN) is proposed to model the three types of information in a unified deep network and achieving UDA. The first two types of information are modeled by the classifier and the domain discriminator, respectively. In data structure modeling, a convolutional neural network (CNN) is first employed to exact features from input signals. After that, the CNN features are input to the proposed graph generation layer to construct instance graphs by mining the relationship of structural characteristics of samples. Then, the instance graphs are modeled by a graph convolutional network, and the maximum mean discrepancy metric is leveraged to estimate the structure discrepancy of instance graphs from different domains. Experimental results conducted on two case studies demonstrate that the proposed DAGCN can not only obtain the best performance among the comparison methods, but also can extract transferable features for domain adaptation. The code library is available at: https://github.com/HazeDT/DAGCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Liufgui应助魔音甜菜采纳,获得10
1秒前
1秒前
七一琦完成签到,获得积分10
1秒前
1秒前
2秒前
leo完成签到,获得积分20
3秒前
3秒前
4秒前
163发布了新的文献求助10
6秒前
6秒前
甜甜圈发布了新的文献求助10
7秒前
8秒前
8秒前
可爱的函函应助liu_zc采纳,获得10
9秒前
9秒前
Liufgui应助啊哭采纳,获得10
10秒前
10秒前
Steven发布了新的文献求助10
11秒前
水加冰糖发布了新的文献求助10
12秒前
希望天下0贩的0应助163采纳,获得10
12秒前
h。完成签到,获得积分10
12秒前
大地完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
16秒前
h。发布了新的文献求助10
17秒前
randylch完成签到,获得积分0
17秒前
17秒前
于于发布了新的文献求助10
18秒前
18秒前
hakuna_matata完成签到 ,获得积分10
18秒前
20秒前
huangbing123发布了新的文献求助10
21秒前
21秒前
威武鸽子发布了新的文献求助10
22秒前
Liufgui应助妮夏采纳,获得10
22秒前
北有云烟完成签到 ,获得积分10
24秒前
asdzsx发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075