Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Conditions

卷积神经网络 计算机科学 分类器(UML) 鉴别器 图形 模式识别(心理学) 数据挖掘 域适应 深度学习 领域(数学分析) 算法 机器学习 人工智能 理论计算机科学 数学 探测器 数学分析 电信
作者
Tianfu Li,Zhibin Zhao,Chuang Sun,Ruqiang Yan,Xuefeng Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-10 被引量:258
标识
DOI:10.1109/tim.2021.3075016
摘要

Unsupervised domain adaptation (UDA)-based methods have made great progress in mechanical fault diagnosis under variable working conditions. In UDA, three types of information, including class label, domain label, and data structure, are essential to bridging the labeled source domain and unlabeled target domain. However, most existing UDA-based methods use only the former two information and ignore the modeling of data structure, which make the information contained in the features extracted by the deep network incomplete. To tackle this issue, a domain adversarial graph convolutional network (DAGCN) is proposed to model the three types of information in a unified deep network and achieving UDA. The first two types of information are modeled by the classifier and the domain discriminator, respectively. In data structure modeling, a convolutional neural network (CNN) is first employed to exact features from input signals. After that, the CNN features are input to the proposed graph generation layer to construct instance graphs by mining the relationship of structural characteristics of samples. Then, the instance graphs are modeled by a graph convolutional network, and the maximum mean discrepancy metric is leveraged to estimate the structure discrepancy of instance graphs from different domains. Experimental results conducted on two case studies demonstrate that the proposed DAGCN can not only obtain the best performance among the comparison methods, but also can extract transferable features for domain adaptation. The code library is available at: https://github.com/HazeDT/DAGCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷炫的源智完成签到,获得积分10
刚刚
1秒前
1秒前
肉鸡应助星河梦枕采纳,获得30
1秒前
Owen应助墨斗在拼搏采纳,获得10
2秒前
小七发布了新的文献求助10
2秒前
3秒前
素雅完成签到,获得积分10
3秒前
难过盼海发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
浮游应助Alex采纳,获得10
4秒前
Lliu应助织诗成锦采纳,获得10
4秒前
科研通AI2S应助czb666采纳,获得10
4秒前
4秒前
shuang发布了新的文献求助10
5秒前
5秒前
6秒前
精明的皮皮虾完成签到,获得积分10
6秒前
NexusExplorer应助虞美人采纳,获得10
6秒前
man发布了新的文献求助10
6秒前
华仔应助潇潇采纳,获得10
7秒前
7秒前
7秒前
7秒前
忧郁老头发布了新的文献求助10
7秒前
今后应助缓慢易云采纳,获得10
7秒前
Owen应助单薄小蜜蜂采纳,获得10
7秒前
wushuai发布了新的文献求助10
7秒前
充电宝应助传统的雨文采纳,获得10
8秒前
Z1070741749完成签到,获得积分20
8秒前
威武安雁发布了新的文献求助10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Jeisher发布了新的文献求助20
9秒前
中中完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688