Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Conditions

卷积神经网络 计算机科学 分类器(UML) 鉴别器 图形 模式识别(心理学) 数据挖掘 域适应 深度学习 算法 人工智能 理论计算机科学 电信 探测器
作者
Tianfu Li,Zhibin Zhao,Chuang Sun,Ruqiang Yan,Xuefeng Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-10 被引量:160
标识
DOI:10.1109/tim.2021.3075016
摘要

Unsupervised domain adaptation (UDA)-based methods have made great progress in mechanical fault diagnosis under variable working conditions. In UDA, three types of information, including class label, domain label, and data structure, are essential to bridging the labeled source domain and unlabeled target domain. However, most existing UDA-based methods use only the former two information and ignore the modeling of data structure, which make the information contained in the features extracted by the deep network incomplete. To tackle this issue, a domain adversarial graph convolutional network (DAGCN) is proposed to model the three types of information in a unified deep network and achieving UDA. The first two types of information are modeled by the classifier and the domain discriminator, respectively. In data structure modeling, a convolutional neural network (CNN) is first employed to exact features from input signals. After that, the CNN features are input to the proposed graph generation layer to construct instance graphs by mining the relationship of structural characteristics of samples. Then, the instance graphs are modeled by a graph convolutional network, and the maximum mean discrepancy metric is leveraged to estimate the structure discrepancy of instance graphs from different domains. Experimental results conducted on two case studies demonstrate that the proposed DAGCN can not only obtain the best performance among the comparison methods, but also can extract transferable features for domain adaptation. The code library is available at: https://github.com/HazeDT/DAGCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助琪琪采纳,获得10
刚刚
after完成签到,获得积分10
1秒前
慕青应助顾北采纳,获得10
1秒前
1秒前
1秒前
英姑应助刘叶采纳,获得10
1秒前
FF完成签到 ,获得积分10
2秒前
2秒前
南国之霄完成签到 ,获得积分10
2秒前
3秒前
斯文败类应助吕如音采纳,获得10
3秒前
3秒前
甜美语芙完成签到,获得积分20
4秒前
Lucas应助flyxga870825采纳,获得10
5秒前
李爱国应助flyxga870825采纳,获得10
5秒前
CH应助一一得一采纳,获得20
5秒前
大萱发布了新的文献求助10
6秒前
cyhccc发布了新的文献求助10
6秒前
薰硝壤应助可耐的Gamma采纳,获得10
6秒前
迷路曼彤完成签到 ,获得积分10
7秒前
7秒前
541完成签到,获得积分10
8秒前
jianxin发布了新的文献求助20
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
11秒前
sylinmm完成签到,获得积分10
12秒前
徐佳乐发布了新的文献求助10
12秒前
65146518完成签到,获得积分20
13秒前
13秒前
King完成签到,获得积分10
13秒前
科研通AI2S应助123采纳,获得10
13秒前
科研通AI2S应助123采纳,获得10
13秒前
顾北发布了新的文献求助10
13秒前
刘叶发布了新的文献求助10
14秒前
fg发布了新的文献求助10
14秒前
zyr应助Yinxi采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135928
求助须知:如何正确求助?哪些是违规求助? 2786670
关于积分的说明 7779194
捐赠科研通 2442969
什么是DOI,文献DOI怎么找? 1298748
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870