Multiscale Residual Network Based on Channel Spatial Attention Mechanism for Multilabel ECG Classification.

模式识别(心理学) 卷积神经网络 机器学习
作者
Shuhong Wang,Runchuan Li,Xu Wang,Shengya Shen,Bing Zhou,Zongmin Wang
出处
期刊:Journal of Healthcare Engineering [Hindawi Publishing Corporation]
卷期号:2021: 6630643-6630643
标识
DOI:10.1155/2021/6630643
摘要

Automatic classification of ECG is very important for early prevention and auxiliary diagnosis of cardiovascular disease patients. In recent years, many studies based on ECG have achieved good results, most of which are based on single-label problems; one record corresponds to one label. However, in actual clinical applications, an ECG record may contain multiple diseases at the same time. Therefore, it is very important to study the multilabel ECG classification. In this paper, a multiscale residual deep neural network CSA-MResNet model based on the channel spatial attention mechanism is proposed. Firstly, the residual network is integrated into a multiscale manner to obtain the characteristics of ECG data at different scales and then increase the channel spatial attention mechanism to better focus on more important channels and more important ECG data fragments. Finally, the model is used to classify multilabel in large databases. The experimental results on the multilabel CCDD show that the CSA-MResNet model has an average F1 score of 88.2% when the multilabel classification of 9 ECGs is performed. Compared with the benchmark model, the F1 score of CSA-MResNet in the multilabel ECG classification increased by up to 1.7%. And, in the model verification on another database HF-challenge, the final average F1 score is 85.8%. Compared with the state-of-the-art methods, CSA-MResNet can help cardiologists perform early-stage rapid screening of ECG and has a certain generalization performance, providing a feasible analysis method for multilabel ECG classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
djxdjt发布了新的文献求助10
1秒前
研友_green发布了新的文献求助30
1秒前
1秒前
1秒前
香蕉觅云应助岳岳岳采纳,获得10
2秒前
宁祥森完成签到,获得积分20
2秒前
壁虎君发布了新的文献求助10
3秒前
田様应助波子汽水采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
浮游应助yb采纳,获得10
5秒前
科研通AI6应助灯灯采纳,获得10
5秒前
feilu完成签到,获得积分10
5秒前
学术小天才完成签到,获得积分10
5秒前
5秒前
小蘑菇应助黄紫红蓝采纳,获得10
5秒前
LK完成签到,获得积分10
6秒前
浮游应助背后的涔雨采纳,获得10
6秒前
6秒前
哆啦的空间站应助宁祥森采纳,获得10
6秒前
浮游应助宁祥森采纳,获得10
6秒前
飘飘玲应助宇文无施采纳,获得10
6秒前
7秒前
7秒前
上官若男应助守岸人采纳,获得10
7秒前
7秒前
xtt完成签到,获得积分10
8秒前
鲁轶祎完成签到,获得积分10
8秒前
科研通AI5应助浩浩浩采纳,获得10
8秒前
科研通AI5应助范黎明采纳,获得10
8秒前
8秒前
xc完成签到,获得积分10
9秒前
日常K人发布了新的文献求助10
10秒前
10秒前
自觉从筠完成签到,获得积分10
10秒前
Carol发布了新的文献求助30
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988783
求助须知:如何正确求助?哪些是违规求助? 4238185
关于积分的说明 13201856
捐赠科研通 4032000
什么是DOI,文献DOI怎么找? 2205983
邀请新用户注册赠送积分活动 1217286
关于科研通互助平台的介绍 1135457