Multiscale Residual Network Based on Channel Spatial Attention Mechanism for Multilabel ECG Classification.

模式识别(心理学) 卷积神经网络 机器学习
作者
Shuhong Wang,Runchuan Li,Xu Wang,Shengya Shen,Bing Zhou,Zongmin Wang
出处
期刊:Journal of Healthcare Engineering [Hindawi Limited]
卷期号:2021: 6630643-6630643
标识
DOI:10.1155/2021/6630643
摘要

Automatic classification of ECG is very important for early prevention and auxiliary diagnosis of cardiovascular disease patients. In recent years, many studies based on ECG have achieved good results, most of which are based on single-label problems; one record corresponds to one label. However, in actual clinical applications, an ECG record may contain multiple diseases at the same time. Therefore, it is very important to study the multilabel ECG classification. In this paper, a multiscale residual deep neural network CSA-MResNet model based on the channel spatial attention mechanism is proposed. Firstly, the residual network is integrated into a multiscale manner to obtain the characteristics of ECG data at different scales and then increase the channel spatial attention mechanism to better focus on more important channels and more important ECG data fragments. Finally, the model is used to classify multilabel in large databases. The experimental results on the multilabel CCDD show that the CSA-MResNet model has an average F1 score of 88.2% when the multilabel classification of 9 ECGs is performed. Compared with the benchmark model, the F1 score of CSA-MResNet in the multilabel ECG classification increased by up to 1.7%. And, in the model verification on another database HF-challenge, the final average F1 score is 85.8%. Compared with the state-of-the-art methods, CSA-MResNet can help cardiologists perform early-stage rapid screening of ECG and has a certain generalization performance, providing a feasible analysis method for multilabel ECG classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助树池采纳,获得10
刚刚
刚刚
刚刚
masonzhang发布了新的文献求助20
1秒前
所所应助南宫若翠采纳,获得10
1秒前
六六完成签到 ,获得积分10
2秒前
2秒前
3秒前
老牛鼓励看文献完成签到,获得积分10
4秒前
DJ完成签到,获得积分10
4秒前
4秒前
v小飞侠101发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
9秒前
善学以致用应助bing采纳,获得10
10秒前
坚强书琴发布了新的文献求助10
11秒前
11秒前
JeremyLiu完成签到,获得积分10
12秒前
12秒前
Clover04应助kolya2013采纳,获得10
13秒前
是一整个圆完成签到,获得积分10
13秒前
13秒前
Franny完成签到 ,获得积分10
13秒前
田様应助和平发展采纳,获得10
15秒前
汉堡包应助czx采纳,获得10
16秒前
hansa发布了新的文献求助10
16秒前
17秒前
一一应助shenxiaohui采纳,获得30
18秒前
礼拜天发布了新的文献求助10
18秒前
masonzhang发布了新的文献求助10
18秒前
隐形曼青应助Famous小人物采纳,获得10
18秒前
郑zheng发布了新的文献求助10
18秒前
20秒前
Akim应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
The SAGE Handbook of Qualitative Research 800
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135113
求助须知:如何正确求助?哪些是违规求助? 2786095
关于积分的说明 7775189
捐赠科研通 2441915
什么是DOI,文献DOI怎么找? 1298256
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600839