Creation of an artificial intelligence model for intubation difficulty classification by deep learning (convolutional neural network) using face images: an observational study

插管 医学 气管插管 金标准(测试) 卷积神经网络 接收机工作特性 气道 深度学习 人工智能 急诊科 外科 计算机科学 放射科 内科学 精神科
作者
Tatsuya Hayasaka,Kazuharu Kawano,Kazuki Kurihara,Hiroto Suzuki,Masaki Nakane,Kaneyuki Kawamae
出处
期刊:Journal of intensive care [BioMed Central]
卷期号:9 (1) 被引量:25
标识
DOI:10.1186/s40560-021-00551-x
摘要

Abstract Background Tracheal intubation is the gold standard for securing the airway, and it is not uncommon to encounter intubation difficulties in intensive care units and emergency rooms. Currently, there is a need for an objective measure to assess intubation difficulties in emergency situations by physicians, residents, and paramedics who are unfamiliar with tracheal intubation. Artificial intelligence (AI) is currently used in medical imaging owing to advanced performance. We aimed to create an AI model to classify intubation difficulties from the patient’s facial image using a convolutional neural network (CNN), which links the facial image with the actual difficulty of intubation. Methods Patients scheduled for surgery at Yamagata University Hospital between April and August 2020 were enrolled. Patients who underwent surgery with altered facial appearance, surgery with altered range of motion in the neck, or intubation performed by a physician with less than 3 years of anesthesia experience were excluded. Sixteen different facial images were obtained from the patients since the day after surgery. All images were judged as “Easy”/“Difficult” by an anesthesiologist, and an AI classification model was created using deep learning by linking the patient’s facial image and the intubation difficulty. Receiver operating characteristic curves of actual intubation difficulty and AI model were developed, and sensitivity, specificity, and area under the curve (AUC) were calculated; median AUC was used as the result. Class activation heat maps were used to visualize how the AI model classifies intubation difficulties. Results The best AI model for classifying intubation difficulties from 16 different images was generated in the supine-side-closed mouth-base position. The accuracy was 80.5%; sensitivity, 81.8%; specificity, 83.3%; AUC, 0.864; and 95% confidence interval, [0.731-0.969], indicating that the class activation heat map was concentrated around the neck regardless of the background; the AI model recognized facial contours and identified intubation difficulties. Conclusion This is the first study to apply deep learning (CNN) to classify intubation difficulties using an AI model. We could create an AI model with an AUC of 0.864. Our AI model may be useful for tracheal intubation performed by inexperienced medical staff in emergency situations or under general anesthesia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
freedom完成签到,获得积分10
刚刚
1秒前
1秒前
念念发布了新的文献求助10
1秒前
尧九完成签到,获得积分10
1秒前
林海中完成签到 ,获得积分10
1秒前
哞哞哞完成签到 ,获得积分10
2秒前
xr完成签到 ,获得积分10
2秒前
Zhou完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Hello应助mm采纳,获得10
2秒前
晴天发布了新的文献求助30
2秒前
哟嚛完成签到,获得积分10
2秒前
朴实尔容完成签到,获得积分20
3秒前
4秒前
美好乐松应助文艺天晴采纳,获得10
5秒前
劲秉应助文艺天晴采纳,获得10
5秒前
鲸落发布了新的文献求助10
5秒前
5秒前
Owen应助行不行要发SCI采纳,获得10
6秒前
ZHQ发布了新的文献求助10
6秒前
邓代容发布了新的文献求助10
6秒前
小次之山发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
Haha完成签到 ,获得积分10
10秒前
乐乐应助朴实尔容采纳,获得10
10秒前
亻鱼完成签到,获得积分10
11秒前
xuan完成签到,获得积分10
12秒前
难过盼海发布了新的文献求助20
12秒前
小陈完成签到,获得积分10
13秒前
13秒前
luqiqi完成签到,获得积分10
13秒前
张紫薇发布了新的文献求助10
13秒前
亻鱼发布了新的文献求助10
13秒前
Donby完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662735
求助须知:如何正确求助?哪些是违规求助? 3223515
关于积分的说明 9752041
捐赠科研通 2933470
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771