清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Creation of an artificial intelligence model for intubation difficulty classification by deep learning (convolutional neural network) using face images: an observational study

插管 医学 气管插管 金标准(测试) 卷积神经网络 接收机工作特性 气道 深度学习 人工智能 急诊科 外科 计算机科学 放射科 内科学 精神科
作者
Tatsuya Hayasaka,Kazuharu Kawano,Kazuki Kurihara,Hiroto Suzuki,Masaki Nakane,Kaneyuki Kawamae
出处
期刊:Journal of intensive care [BioMed Central]
卷期号:9 (1) 被引量:25
标识
DOI:10.1186/s40560-021-00551-x
摘要

Abstract Background Tracheal intubation is the gold standard for securing the airway, and it is not uncommon to encounter intubation difficulties in intensive care units and emergency rooms. Currently, there is a need for an objective measure to assess intubation difficulties in emergency situations by physicians, residents, and paramedics who are unfamiliar with tracheal intubation. Artificial intelligence (AI) is currently used in medical imaging owing to advanced performance. We aimed to create an AI model to classify intubation difficulties from the patient’s facial image using a convolutional neural network (CNN), which links the facial image with the actual difficulty of intubation. Methods Patients scheduled for surgery at Yamagata University Hospital between April and August 2020 were enrolled. Patients who underwent surgery with altered facial appearance, surgery with altered range of motion in the neck, or intubation performed by a physician with less than 3 years of anesthesia experience were excluded. Sixteen different facial images were obtained from the patients since the day after surgery. All images were judged as “Easy”/“Difficult” by an anesthesiologist, and an AI classification model was created using deep learning by linking the patient’s facial image and the intubation difficulty. Receiver operating characteristic curves of actual intubation difficulty and AI model were developed, and sensitivity, specificity, and area under the curve (AUC) were calculated; median AUC was used as the result. Class activation heat maps were used to visualize how the AI model classifies intubation difficulties. Results The best AI model for classifying intubation difficulties from 16 different images was generated in the supine-side-closed mouth-base position. The accuracy was 80.5%; sensitivity, 81.8%; specificity, 83.3%; AUC, 0.864; and 95% confidence interval, [0.731-0.969], indicating that the class activation heat map was concentrated around the neck regardless of the background; the AI model recognized facial contours and identified intubation difficulties. Conclusion This is the first study to apply deep learning (CNN) to classify intubation difficulties using an AI model. We could create an AI model with an AUC of 0.864. Our AI model may be useful for tracheal intubation performed by inexperienced medical staff in emergency situations or under general anesthesia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助CDX采纳,获得10
刚刚
woods完成签到,获得积分10
1秒前
Liuruijia完成签到 ,获得积分10
8秒前
44秒前
xun完成签到,获得积分20
1分钟前
1947188918完成签到,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
yxdjzwx完成签到,获得积分10
1分钟前
BryanCh完成签到,获得积分10
1分钟前
1分钟前
manmanzhong完成签到 ,获得积分10
1分钟前
游大达完成签到,获得积分0
2分钟前
Bake完成签到 ,获得积分10
2分钟前
dydydyd完成签到,获得积分10
2分钟前
ybheart完成签到,获得积分0
2分钟前
Xiaoqiang给Xiaoqiang的求助进行了留言
2分钟前
刚子完成签到 ,获得积分10
3分钟前
执意完成签到 ,获得积分10
3分钟前
3分钟前
CDX发布了新的文献求助10
3分钟前
3分钟前
无私雅柏完成签到 ,获得积分10
3分钟前
CDX完成签到 ,获得积分10
3分钟前
Freddy完成签到 ,获得积分10
4分钟前
4分钟前
咯咯咯完成签到 ,获得积分10
5分钟前
科研小白完成签到 ,获得积分10
5分钟前
5分钟前
digger2023完成签到 ,获得积分10
5分钟前
5分钟前
Xiaoqiang发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
taster完成签到,获得积分10
6分钟前
小米的稻田完成签到 ,获得积分10
6分钟前
6分钟前
Xiaoqiang完成签到,获得积分10
7分钟前
cheng完成签到 ,获得积分10
7分钟前
jojo完成签到 ,获得积分10
8分钟前
8分钟前
王小凡完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910445
求助须知:如何正确求助?哪些是违规求助? 4186274
关于积分的说明 12999283
捐赠科研通 3953717
什么是DOI,文献DOI怎么找? 2168062
邀请新用户注册赠送积分活动 1186516
关于科研通互助平台的介绍 1093700