Creation of an artificial intelligence model for intubation difficulty classification by deep learning (convolutional neural network) using face images: an observational study

插管 医学 气管插管 金标准(测试) 卷积神经网络 接收机工作特性 气道 深度学习 人工智能 急诊科 外科 计算机科学 放射科 内科学 精神科
作者
Tatsuya Hayasaka,Kazuharu Kawano,Kazuki Kurihara,Hiroto Suzuki,Masaki Nakane,Kaneyuki Kawamae
出处
期刊:Journal of intensive care [Springer Nature]
卷期号:9 (1) 被引量:25
标识
DOI:10.1186/s40560-021-00551-x
摘要

Abstract Background Tracheal intubation is the gold standard for securing the airway, and it is not uncommon to encounter intubation difficulties in intensive care units and emergency rooms. Currently, there is a need for an objective measure to assess intubation difficulties in emergency situations by physicians, residents, and paramedics who are unfamiliar with tracheal intubation. Artificial intelligence (AI) is currently used in medical imaging owing to advanced performance. We aimed to create an AI model to classify intubation difficulties from the patient’s facial image using a convolutional neural network (CNN), which links the facial image with the actual difficulty of intubation. Methods Patients scheduled for surgery at Yamagata University Hospital between April and August 2020 were enrolled. Patients who underwent surgery with altered facial appearance, surgery with altered range of motion in the neck, or intubation performed by a physician with less than 3 years of anesthesia experience were excluded. Sixteen different facial images were obtained from the patients since the day after surgery. All images were judged as “Easy”/“Difficult” by an anesthesiologist, and an AI classification model was created using deep learning by linking the patient’s facial image and the intubation difficulty. Receiver operating characteristic curves of actual intubation difficulty and AI model were developed, and sensitivity, specificity, and area under the curve (AUC) were calculated; median AUC was used as the result. Class activation heat maps were used to visualize how the AI model classifies intubation difficulties. Results The best AI model for classifying intubation difficulties from 16 different images was generated in the supine-side-closed mouth-base position. The accuracy was 80.5%; sensitivity, 81.8%; specificity, 83.3%; AUC, 0.864; and 95% confidence interval, [0.731-0.969], indicating that the class activation heat map was concentrated around the neck regardless of the background; the AI model recognized facial contours and identified intubation difficulties. Conclusion This is the first study to apply deep learning (CNN) to classify intubation difficulties using an AI model. We could create an AI model with an AUC of 0.864. Our AI model may be useful for tracheal intubation performed by inexperienced medical staff in emergency situations or under general anesthesia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
勤奋忆彤发布了新的文献求助10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
刚刚
wanci应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
ZhiyunXu2012完成签到 ,获得积分10
刚刚
2秒前
丘比特应助糊涂的沛山采纳,获得10
2秒前
3秒前
21发布了新的文献求助10
5秒前
枫夕完成签到,获得积分10
6秒前
突突突发布了新的文献求助10
7秒前
Hi发布了新的文献求助20
7秒前
xiao完成签到,获得积分10
8秒前
su完成签到 ,获得积分10
8秒前
小蘑菇完成签到,获得积分10
9秒前
dawn完成签到,获得积分10
9秒前
水深三英尺完成签到 ,获得积分10
9秒前
共享精神应助Continuezyw采纳,获得30
11秒前
11秒前
12秒前
13秒前
sh完成签到,获得积分10
14秒前
soso完成签到,获得积分10
15秒前
16秒前
孤独的凌文给孤独的凌文的求助进行了留言
17秒前
香蕉君达完成签到,获得积分10
18秒前
等等发布了新的文献求助10
18秒前
18秒前
研友_VZG7GZ应助浪里小白龙采纳,获得10
18秒前
19秒前
YY发布了新的文献求助10
19秒前
zhul09完成签到,获得积分10
19秒前
曼曼亦灿灿完成签到,获得积分10
19秒前
21秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206987
求助须知:如何正确求助?哪些是违规求助? 2856316
关于积分的说明 8104204
捐赠科研通 2521502
什么是DOI,文献DOI怎么找? 1354661
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613292