Atmospheric plasma sprayed thick thermal barrier coatings: Microstructure, thermal shock behaviors and failure mechanism

热障涂层 材料科学 热冲击 微观结构 复合材料 涂层 开裂 热喷涂 陶瓷 休克(循环) 大气压等离子体 等离子体 量子力学 医学 物理 内科学
作者
Shiqian Tao,Jiasheng Yang,Fang Shao,Huayu Zhao,Xinghua Zhong,Yin Zhuang,Jing Sheng,Jinxing Ni,Qinghui Li,Shunyan Tao
出处
期刊:Engineering Failure Analysis [Elsevier BV]
卷期号:131: 105819-105819 被引量:37
标识
DOI:10.1016/j.engfailanal.2021.105819
摘要

Abstract Advanced thick thermal barrier coatings (TTBCs) have attracted extensive attentions due to the embedded segmentation-crack structure and excellent thermal insulation performance. The thermal shock life and failure behaviors of advanced TTBCs still remain a challenge. The objective of this work is to well understand the effect of microstructure on the coating cracking behavior in atmospheric plasma sprayed TTBCs system, in which the extended Raman spectroscopy (RS) techniques are used to obtain an in-depth understanding on how the oxidation affects the stress distribution in coatings and in turn, the causes of the observed cracking. Results show that the TTBCs deposited by the highly purified feedstock exhibit excellent thermal shock life at 1100 ℃ due to the well-proportioned and compact structure and built-in vertical cracks. After thermal shock test, the broken regions usually occur at the horizontal cracks and vertical cracks area within top-coat, and top-coat/bondcoat interface, which may suggest that each structural mutation parts are prone to causing the TTBCs instabilities. Cracks are propagated and extended under thermal tensile stress. The coating failure is most possibly dominated by the accumulated residual stress generated due to thermal expansion mismatch between the substrate and top-coat. In addition, the good thermal shock resistance have a close relationship with the newly formed vertical cracks at the bottom of ceramic coating near the top-coat/bondcoat interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
半糖糖完成签到,获得积分10
4秒前
4秒前
黑尼格完成签到,获得积分10
6秒前
7秒前
爆米花应助little采纳,获得100
7秒前
搜集达人应助huiyue采纳,获得10
8秒前
聪明面包完成签到,获得积分10
8秒前
汤熙发布了新的文献求助10
9秒前
YHBBZ完成签到 ,获得积分10
9秒前
温柔一个阿陈完成签到,获得积分10
10秒前
小青椒应助半糖糖采纳,获得50
10秒前
11秒前
pan完成签到,获得积分10
11秒前
13秒前
glacier完成签到,获得积分10
13秒前
披日悬光完成签到,获得积分10
14秒前
15秒前
17秒前
科研通AI5应助yyyyy采纳,获得10
17秒前
可爱半双完成签到,获得积分10
17秒前
17秒前
汤熙完成签到,获得积分10
18秒前
小鸻完成签到 ,获得积分10
19秒前
紫菜发布了新的文献求助10
19秒前
平常炳发布了新的文献求助10
22秒前
bkagyin应助江添盛望采纳,获得10
23秒前
白色花海发布了新的文献求助10
25秒前
荒野男完成签到 ,获得积分10
25秒前
zw完成签到,获得积分10
25秒前
深情安青应助酱紫采纳,获得10
27秒前
搜集达人应助姜雨采纳,获得10
29秒前
厉飞羽应助yun尘世采纳,获得10
29秒前
汉堡包应助NiNi采纳,获得10
29秒前
31秒前
Maxine完成签到 ,获得积分10
32秒前
爆米花应助wenxianxiazai123采纳,获得10
34秒前
35秒前
CodeCraft应助平常炳采纳,获得10
35秒前
会有那么一天完成签到,获得积分10
37秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207406
求助须知:如何正确求助?哪些是违规求助? 4385353
关于积分的说明 13656706
捐赠科研通 4243935
什么是DOI,文献DOI怎么找? 2328474
邀请新用户注册赠送积分活动 1326166
关于科研通互助平台的介绍 1278375