Deep-learning single-shot detector for automatic detection of brain metastases with the combined use of contrast-enhanced and non-enhanced computed tomography images

医学 对比度(视觉) 核医学 假阳性悖论 单发 对比度增强 放射科 特征(语言学) 计算机断层摄影术 模式识别(心理学) 人工智能 磁共振成像 光学 哲学 物理 语言学 计算机科学
作者
Hidemasa Takao,Shiori Amemiya,Shimpei Kato,Hiroshi Yamashita,Naoya Sakamoto,Osamu Abe
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:144: 110015-110015 被引量:6
标识
DOI:10.1016/j.ejrad.2021.110015
摘要

Abstract

Purpose

To develop a deep-learning object detection model for automatic detection of brain metastases that simultaneously uses contrast-enhanced and non-enhanced images as inputs, and to compare its performance with that of a model that uses only contrast-enhanced images.

Method

A total of 116 computed tomography (CT) scans of 116 patients with brain metastases were included in this study. They showed a total of 659 metastases, 428 of which were used for training and validation (mean size, 11.3 ± 9.9 mm) and 231 were used for testing (mean size, 9.0 ± 7.0 mm). Single-shot detector (SSD) models were constructed with a feature fusion module, and their results were compared per lesion at a confidence threshold of 50%.

Results

The sensitivity was 88.7% for the model that used both contrast-enhanced and non-enhanced CT images (the CE + NECT model) and 87.6% for the model that used only contrast-enhanced CT images (the CECT model). The positive predictive value (PPV) was 44.0% for the CE + NECT model and 37.2% for the CECT model. The number of false positives per patient was 9.9 for the CE + NECT model and 13.6 for the CECT model. The CE + NECT model had a significantly higher PPV (t test, p < 0.001), significantly fewer false positives (t test, p < 0.001), and a tendency to be more sensitive (t test, p = 0.14).

Conclusions

The results indicate that the information on true contrast enhancement obtained by comparing the contrast-enhanced and non-enhanced images may prevent the detection of pseudolesions, suppress false positives, and improve the performance of deep-learning object detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maxwell158发布了新的文献求助10
刚刚
kk发布了新的文献求助10
1秒前
嘟嘟完成签到,获得积分10
1秒前
ppp完成签到,获得积分10
1秒前
1秒前
茅十八完成签到,获得积分10
2秒前
dqhahaha发布了新的文献求助10
3秒前
SYLH应助xfffffff采纳,获得10
3秒前
wanci应助xfffffff采纳,获得10
3秒前
西西完成签到,获得积分10
4秒前
上善若水666完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
ZoeChoo完成签到,获得积分10
5秒前
kk完成签到,获得积分10
5秒前
6秒前
千里江山一只蝇完成签到,获得积分10
6秒前
吃的饭广泛发布了新的文献求助200
7秒前
庾傀斗发布了新的文献求助10
7秒前
Warten995完成签到,获得积分10
7秒前
7秒前
chouchou完成签到,获得积分10
8秒前
点墨完成签到 ,获得积分10
8秒前
COCO发布了新的文献求助10
9秒前
zq完成签到,获得积分20
10秒前
热心冷亦发布了新的文献求助10
11秒前
Daisy完成签到,获得积分10
11秒前
11秒前
梵莫完成签到,获得积分10
12秒前
LX发布了新的文献求助10
12秒前
庾傀斗完成签到,获得积分10
12秒前
12秒前
13秒前
CodeCraft应助guanshujuan采纳,获得10
13秒前
SciGPT应助夏天采纳,获得10
13秒前
棋士应助蓝胖子采纳,获得20
13秒前
wysy发布了新的文献求助10
13秒前
JamesPei应助zhc采纳,获得10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951389
求助须知:如何正确求助?哪些是违规求助? 3496717
关于积分的说明 11084234
捐赠科研通 3227173
什么是DOI,文献DOI怎么找? 1784313
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801110