亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-learning single-shot detector for automatic detection of brain metastases with the combined use of contrast-enhanced and non-enhanced computed tomography images

医学 对比度(视觉) 核医学 假阳性悖论 单发 对比度增强 放射科 特征(语言学) 计算机断层摄影术 模式识别(心理学) 人工智能 磁共振成像 光学 哲学 物理 语言学 计算机科学
作者
Hidemasa Takao,Shiori Amemiya,Shimpei Kato,Hiroshi Yamashita,Naoya Sakamoto,Osamu Abe
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:144: 110015-110015 被引量:6
标识
DOI:10.1016/j.ejrad.2021.110015
摘要

Abstract

Purpose

To develop a deep-learning object detection model for automatic detection of brain metastases that simultaneously uses contrast-enhanced and non-enhanced images as inputs, and to compare its performance with that of a model that uses only contrast-enhanced images.

Method

A total of 116 computed tomography (CT) scans of 116 patients with brain metastases were included in this study. They showed a total of 659 metastases, 428 of which were used for training and validation (mean size, 11.3 ± 9.9 mm) and 231 were used for testing (mean size, 9.0 ± 7.0 mm). Single-shot detector (SSD) models were constructed with a feature fusion module, and their results were compared per lesion at a confidence threshold of 50%.

Results

The sensitivity was 88.7% for the model that used both contrast-enhanced and non-enhanced CT images (the CE + NECT model) and 87.6% for the model that used only contrast-enhanced CT images (the CECT model). The positive predictive value (PPV) was 44.0% for the CE + NECT model and 37.2% for the CECT model. The number of false positives per patient was 9.9 for the CE + NECT model and 13.6 for the CECT model. The CE + NECT model had a significantly higher PPV (t test, p < 0.001), significantly fewer false positives (t test, p < 0.001), and a tendency to be more sensitive (t test, p = 0.14).

Conclusions

The results indicate that the information on true contrast enhancement obtained by comparing the contrast-enhanced and non-enhanced images may prevent the detection of pseudolesions, suppress false positives, and improve the performance of deep-learning object detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
古月发布了新的文献求助10
29秒前
烟花应助鹅鹅鹅采纳,获得30
33秒前
40秒前
鹅鹅鹅完成签到,获得积分10
41秒前
鹅鹅鹅发布了新的文献求助30
43秒前
52秒前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
安静的谷丝完成签到,获得积分10
1分钟前
蓝色隐莲完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
爆米花应助Su采纳,获得10
2分钟前
科研通AI2S应助天才小熊猫采纳,获得10
2分钟前
2分钟前
Su发布了新的文献求助10
2分钟前
2分钟前
Su完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Wang完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
CCD完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
魔幻诗兰发布了新的文献求助10
3分钟前
天才小熊猫完成签到,获得积分10
3分钟前
3分钟前
魔幻诗兰完成签到,获得积分10
3分钟前
LJL完成签到 ,获得积分10
3分钟前
4分钟前
劳健龙完成签到 ,获得积分10
4分钟前
4分钟前
111完成签到 ,获得积分10
4分钟前
科研通AI2S应助Marciu33采纳,获得10
4分钟前
养猪人完成签到,获得积分10
4分钟前
4分钟前
5分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229679
求助须知:如何正确求助?哪些是违规求助? 2877234
关于积分的说明 8198555
捐赠科研通 2544698
什么是DOI,文献DOI怎么找? 1374568
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621806