Deep-learning single-shot detector for automatic detection of brain metastases with the combined use of contrast-enhanced and non-enhanced computed tomography images

医学 对比度(视觉) 核医学 假阳性悖论 单发 对比度增强 放射科 特征(语言学) 计算机断层摄影术 模式识别(心理学) 人工智能 磁共振成像 光学 哲学 物理 语言学 计算机科学
作者
Hidemasa Takao,Shiori Amemiya,Shimpei Kato,Hiroshi Yamashita,Naoya Sakamoto,Osamu Abe
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:144: 110015-110015 被引量:6
标识
DOI:10.1016/j.ejrad.2021.110015
摘要

Abstract

Purpose

To develop a deep-learning object detection model for automatic detection of brain metastases that simultaneously uses contrast-enhanced and non-enhanced images as inputs, and to compare its performance with that of a model that uses only contrast-enhanced images.

Method

A total of 116 computed tomography (CT) scans of 116 patients with brain metastases were included in this study. They showed a total of 659 metastases, 428 of which were used for training and validation (mean size, 11.3 ± 9.9 mm) and 231 were used for testing (mean size, 9.0 ± 7.0 mm). Single-shot detector (SSD) models were constructed with a feature fusion module, and their results were compared per lesion at a confidence threshold of 50%.

Results

The sensitivity was 88.7% for the model that used both contrast-enhanced and non-enhanced CT images (the CE + NECT model) and 87.6% for the model that used only contrast-enhanced CT images (the CECT model). The positive predictive value (PPV) was 44.0% for the CE + NECT model and 37.2% for the CECT model. The number of false positives per patient was 9.9 for the CE + NECT model and 13.6 for the CECT model. The CE + NECT model had a significantly higher PPV (t test, p < 0.001), significantly fewer false positives (t test, p < 0.001), and a tendency to be more sensitive (t test, p = 0.14).

Conclusions

The results indicate that the information on true contrast enhancement obtained by comparing the contrast-enhanced and non-enhanced images may prevent the detection of pseudolesions, suppress false positives, and improve the performance of deep-learning object detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
koi发布了新的文献求助10
1秒前
浦肯野应助湖月照我影采纳,获得30
1秒前
1秒前
陈博士完成签到,获得积分10
2秒前
Citrus完成签到,获得积分10
3秒前
费老三发布了新的文献求助30
3秒前
华仔应助chenjyuu采纳,获得10
3秒前
3秒前
最最最发布了新的文献求助10
3秒前
3秒前
Tuesday完成签到 ,获得积分10
4秒前
4秒前
5秒前
阿毛发布了新的文献求助10
6秒前
7秒前
情怀应助灵巧荆采纳,获得10
7秒前
Ll发布了新的文献求助10
7秒前
Peter发布了新的文献求助30
8秒前
8秒前
9秒前
科研韭菜发布了新的文献求助10
9秒前
科研通AI5应助爱学习采纳,获得10
9秒前
科研通AI5应助跳跃的太阳采纳,获得10
9秒前
苏尔琳诺完成签到,获得积分10
9秒前
科研通AI5应助a1oft采纳,获得10
10秒前
10秒前
关关过完成签到,获得积分10
10秒前
呢不辣完成签到,获得积分10
10秒前
10秒前
shi hui应助陈博士采纳,获得10
10秒前
10秒前
糖糖关注了科研通微信公众号
11秒前
11秒前
小恶于完成签到 ,获得积分10
11秒前
科研通AI2S应助落晨采纳,获得10
12秒前
12秒前
13秒前
半颗橙子发布了新的文献求助10
13秒前
小可爱完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762