Revisiting Fuzzy Signatures: Towards a More Risk-Free Cryptographic Authentication System based on Biometrics

生物识别 计算机科学 密码 模糊逻辑 数据挖掘 密码学 认证(法律) 计算机安全 数字签名 钥匙(锁)
作者
Shuichi Katsumata,Takahiro Matsuda,Wataru Nakamura,Kazuma Ohara,Kenta Takahashi
出处
期刊:Cornell University - arXiv
标识
DOI:10.1145/3460120.3484586
摘要

Biometric authentication is one of the promising alternatives to standard password-based authentication offering better usability and security. In this work, we revisit the biometric authentication based on "fuzzy signatures" introduced by Takahashi et al. (ACNS'15, IJIS'19). These are special types of digital signatures where the secret signing key can be a "fuzzy" data such as user's biometrics. Compared to other cryptographically secure biometric authentications as those relying on fuzzy extractors, the fuzzy signature-based scheme provides a more attractive security guarantee. However, despite their potential values, fuzzy signatures have not attracted much attention owing to their theory-oriented presentations in all prior works. For instance, the discussion on the practical feasibility of the assumptions (such as the entropy of user biometrics), which the security of fuzzy signatures hinges on, is completely missing. In this work, we revisit fuzzy signatures and show that we can indeed efficiently and securely implement them in practice. At a high level, our contribution is threefold: (i) we provide a much simpler, more efficient, and direct construction of fuzzy signature compared to prior works; (ii) we establish novel statistical techniques to experimentally evaluate the conditions on biometrics that are required to securely instantiate fuzzy signatures; and (iii) we provide experimental results using a real-world finger-vein dataset to show that finger-veins from a single hand are sufficient to construct efficient and secure fuzzy signatures. Our performance analysis shows that in a practical scenario with 112-bits of security, the size of the signature is 1256 bytes, and the running time for signing/verification is only a few milliseconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
nshdaq12给nshdaq12的求助进行了留言
8秒前
9秒前
13秒前
14秒前
念姬发布了新的文献求助10
14秒前
14秒前
ljm发布了新的文献求助10
19秒前
Asahi完成签到,获得积分10
19秒前
20秒前
司马大都督完成签到,获得积分10
20秒前
果果完成签到,获得积分10
21秒前
丘比特应助leela采纳,获得10
21秒前
21秒前
科研通AI2S应助Long采纳,获得10
24秒前
SnowIng发布了新的文献求助15
26秒前
ljm完成签到,获得积分10
26秒前
28秒前
31秒前
31秒前
32秒前
yeexue发布了新的文献求助10
32秒前
真臻发布了新的文献求助10
35秒前
鲜艳的白开水完成签到,获得积分10
35秒前
35秒前
36秒前
123完成签到,获得积分10
36秒前
大个应助tigger采纳,获得10
37秒前
38秒前
寂寞的向真完成签到 ,获得积分10
39秒前
41秒前
昔时旧日应助白小黑采纳,获得10
42秒前
华仔应助刘一采纳,获得10
43秒前
丸子完成签到,获得积分20
43秒前
43秒前
Akim应助无语大王采纳,获得10
44秒前
淡然紫寒发布了新的文献求助10
44秒前
闪明火龙果完成签到,获得积分20
45秒前
Zzzzz发布了新的文献求助10
46秒前
luckkit完成签到 ,获得积分10
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458771
求助须知:如何正确求助?哪些是违规求助? 3053518
关于积分的说明 9036928
捐赠科研通 2742726
什么是DOI,文献DOI怎么找? 1504524
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519