Modeling Spatial Distribution and Determinant of PM2.5 at Micro-Level Using Geographically Weighted Regression (GWR) to Inform Sustainable Mobility Policies in Campus Based on Evidence from King Abdulaziz University, Jeddah, Saudi Arabia

滞后 地理加权回归模型 运输工程 环境科学 RSS 地理 估计员 空间分布 区域科学 自然地理学 统计 计算机科学 工程类 数学 操作系统
作者
Alok Tiwari,Mohammed Aljoufie
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:13 (21): 12043-12043 被引量:5
标识
DOI:10.3390/su132112043
摘要

Air pollution is fatal. Fine particles, such as PM2.5, in ambient air might be the cause of many physical and psychological disorders, including cognitive decline. This is why educational policymakers are adopting sustainable mobility, and other policy measures, to make their campuses carbon-neutral; however, car-dependent cities and their university campuses are still lagging behind in this area. This study attempts to model the spatial heterogeneity and determinants of PM2.5 at the King Abdulaziz University campus in Jeddah, which is ranked first among the Saudi Arabian universities, as well as in the MENA region. We developed four OLS and GWR models of different peak and off-peak periods during weekdays in order to estimate the determinants of the PM2.5 concentration. The number of cars, humidity, temperature, windspeed, distance from trees, and construction sites were the estimators in our analysis. Because of a lack of secondary data at a finer scale, we collected the samples of all dependent and independent variables at 51 locations on the KAU campus. Model selection was based on RSS, log-likelihood, adjusted R2, and AICc, and a modal comparison shows that the GWR variant of Model-2 outperformed the other models. The results of the GWR model demonstrate the geographical variability of the PM2.5 concentration on the KAU campus, to which the volume of car traffic is the key contributor. Hence, we recommend using the results of this study to support the development of a car-free and zero-carbon campus at KAU; furthermore, this study could be exploited by other campuses in Saudi Arabia and the Gulf region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助风白采纳,获得10
1秒前
2秒前
2秒前
sxm发布了新的文献求助10
2秒前
陈秋发布了新的文献求助10
5秒前
5秒前
宁静致远发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
8秒前
幸福飞荷发布了新的文献求助10
9秒前
9秒前
学术版7e发布了新的文献求助10
10秒前
善学以致用应助诚心黑夜采纳,获得10
10秒前
qiuyu发布了新的文献求助10
10秒前
11秒前
怡崽完成签到,获得积分20
12秒前
光影发布了新的文献求助30
12秒前
张lf发布了新的文献求助10
12秒前
罗罗罗发布了新的文献求助10
13秒前
小泉完成签到,获得积分10
13秒前
lxl发布了新的文献求助10
13秒前
爆米花应助取名采纳,获得10
13秒前
14秒前
Cyrus完成签到 ,获得积分10
14秒前
14秒前
Hello应助桂先生采纳,获得10
15秒前
changping应助小四喜采纳,获得10
15秒前
15秒前
清脆飞机发布了新的文献求助10
15秒前
111完成签到 ,获得积分10
15秒前
田様应助科研通管家采纳,获得30
16秒前
今后应助科研通管家采纳,获得10
16秒前
孤独的涔完成签到,获得积分10
16秒前
昏睡的蟠桃应助科研通管家采纳,获得150
16秒前
16秒前
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062030
求助须知:如何正确求助?哪些是违规求助? 4285935
关于积分的说明 13355964
捐赠科研通 4103820
什么是DOI,文献DOI怎么找? 2246990
邀请新用户注册赠送积分活动 1252642
关于科研通互助平台的介绍 1183592