Modeling Spatial Distribution and Determinant of PM2.5 at Micro-Level Using Geographically Weighted Regression (GWR) to Inform Sustainable Mobility Policies in Campus Based on Evidence from King Abdulaziz University, Jeddah, Saudi Arabia

滞后 地理加权回归模型 运输工程 环境科学 RSS 地理 估计员 空间分布 区域科学 自然地理学 统计 计算机科学 工程类 数学 操作系统
作者
Alok Tiwari,Mohammed Aljoufie
出处
期刊:Sustainability [MDPI AG]
卷期号:13 (21): 12043-12043 被引量:5
标识
DOI:10.3390/su132112043
摘要

Air pollution is fatal. Fine particles, such as PM2.5, in ambient air might be the cause of many physical and psychological disorders, including cognitive decline. This is why educational policymakers are adopting sustainable mobility, and other policy measures, to make their campuses carbon-neutral; however, car-dependent cities and their university campuses are still lagging behind in this area. This study attempts to model the spatial heterogeneity and determinants of PM2.5 at the King Abdulaziz University campus in Jeddah, which is ranked first among the Saudi Arabian universities, as well as in the MENA region. We developed four OLS and GWR models of different peak and off-peak periods during weekdays in order to estimate the determinants of the PM2.5 concentration. The number of cars, humidity, temperature, windspeed, distance from trees, and construction sites were the estimators in our analysis. Because of a lack of secondary data at a finer scale, we collected the samples of all dependent and independent variables at 51 locations on the KAU campus. Model selection was based on RSS, log-likelihood, adjusted R2, and AICc, and a modal comparison shows that the GWR variant of Model-2 outperformed the other models. The results of the GWR model demonstrate the geographical variability of the PM2.5 concentration on the KAU campus, to which the volume of car traffic is the key contributor. Hence, we recommend using the results of this study to support the development of a car-free and zero-carbon campus at KAU; furthermore, this study could be exploited by other campuses in Saudi Arabia and the Gulf region.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pups发布了新的文献求助30
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
1秒前
孙行者完成签到,获得积分10
1秒前
认真的不评完成签到,获得积分10
1秒前
华仔应助尊敬的凌晴采纳,获得10
2秒前
2秒前
petrichor完成签到,获得积分10
3秒前
3秒前
3秒前
小枣发布了新的文献求助10
4秒前
4秒前
GG应助purple采纳,获得30
4秒前
朱1591发布了新的文献求助10
4秒前
景cc完成签到,获得积分10
5秒前
5秒前
SciGPT应助anan采纳,获得10
5秒前
5秒前
DDL完成签到 ,获得积分10
5秒前
小枣发布了新的文献求助10
6秒前
滴滴答答完成签到,获得积分10
6秒前
小枣发布了新的文献求助10
6秒前
177ycd发布了新的文献求助10
6秒前
如果发布了新的文献求助30
6秒前
小美发布了新的文献求助10
6秒前
小枣发布了新的文献求助10
6秒前
6秒前
7秒前
小枣发布了新的文献求助10
7秒前
小枣发布了新的文献求助10
7秒前
夏天有空调哦完成签到,获得积分10
7秒前
7秒前
7秒前
ye完成签到,获得积分10
7秒前
玉碧完成签到,获得积分10
7秒前
佩琪小姨发布了新的文献求助10
7秒前
充电宝应助钮小童采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624927
求助须知:如何正确求助?哪些是违规求助? 4710799
关于积分的说明 14952231
捐赠科研通 4778856
什么是DOI,文献DOI怎么找? 2553454
邀请新用户注册赠送积分活动 1515421
关于科研通互助平台的介绍 1475721