清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Analysis of parallel flow type internally cooled membrane based liquid desiccant dehumidifier using neural networks approach

干燥剂 入口 体积流量 液体干燥剂 人工神经网络 响应面法 流量(数学) 火用 工艺工程 计算流体力学 材料科学 环境科学 机械工程 计算机科学 工程类 机械 人工智能 复合材料 物理 机器学习
作者
Jaimon Dennis Quadros,Sher Afghan Khan,T. Prashanth
出处
期刊:Science and Technology for the Built Environment [Informa]
卷期号:28 (3): 403-421 被引量:1
标识
DOI:10.1080/23744731.2021.1996121
摘要

In this paper, we report an intelligent model based on ANN to optimize the performance of an internally cooled membrane-based liquid desiccant dehumidifier (IMLDD). IMLDD can effectively mitigate dehumidification deterioration caused by changes in the temperature of the desiccant solution. The mediums of desiccant solution and air are isolated by means of a semi-permeable membrane on both sides in the IMLDD. The temperature of the desiccant solution is reduced by the cooling media that flows through the tubes placed within the solution channels. Generally, many fluid flow parameters like air, cooling water, desiccant solution, etc., play a critical role in controlling the performance of an IMLDD. For our study, inlet air temperature (Tai), inlet concentration of the desiccant solution (Cdsi), flow rate of the desiccant solution at the inlet (ṁdsi), and inlet cooling temperature of water (Tcwi) have been considered as the operating parameters/conditions. The outputs or responses namely dehumidification efficiency (ηdh), Exergy efficiency (ηex), and unmatched coefficient (ξum) analyze the performance of the IMLDD. The data comprising of massive input-output was achieved using the response surface methodology (RSM) based central composite design (CCD). Back propagation algorithm (BP), artificial bee colony (ABC), and genetic algorithm (GA) models were used to train the neural network (NN) parameters using the data collected from the CCD based response equation. Forward and reverse mapping models were developed using the trained ANNs. Forward modeling predicts the performance parameters of the IMLDD (i.e., ηdh, ηex, and ξuc) for known combinations of operating parameters (i.e., Tai, Cdsi, ṁdsi, Tcwi). Similarly, reverse modeling aims at predicting the operating conditions for a known set of performance parameters. The performances of the employed NN models were tested using fifteen arbitrarily generated test cases. The experimental and neural network predicted results were found to be in line with each other for both forward and reverse models. The forward modeling results could assist engineers with off-line tracking, by predicting the response without executing experiments. The reverse modeling prediction will aid in dynamically adjusting the operating parameters to achieve the optimal thermodynamic output characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
限量版小祸害完成签到 ,获得积分10
3秒前
qiqi完成签到,获得积分10
5秒前
6秒前
我是老大应助Joy采纳,获得10
10秒前
qiqiqiqiqi完成签到 ,获得积分10
10秒前
Singularity完成签到,获得积分0
11秒前
早睡早起身体好Q完成签到 ,获得积分10
26秒前
沉静香氛完成签到 ,获得积分10
27秒前
naczx完成签到,获得积分0
30秒前
李志全完成签到 ,获得积分10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
xgx984完成签到,获得积分10
34秒前
共享精神应助keke采纳,获得10
41秒前
Nene完成签到 ,获得积分10
43秒前
ChatGPT完成签到,获得积分10
44秒前
大模型应助Zhuyin采纳,获得10
45秒前
46秒前
MoodMeed完成签到,获得积分10
49秒前
49秒前
Joy发布了新的文献求助10
50秒前
keke发布了新的文献求助10
54秒前
顺利问玉完成签到 ,获得积分10
1分钟前
害羞的裘完成签到 ,获得积分10
1分钟前
此时此刻完成签到 ,获得积分10
1分钟前
SciGPT应助Joy采纳,获得10
1分钟前
1分钟前
mengqing发布了新的文献求助10
1分钟前
1分钟前
coding完成签到,获得积分10
1分钟前
Lucas应助积极香菜采纳,获得10
1分钟前
玺青一生完成签到 ,获得积分10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
呼延坤完成签到 ,获得积分10
1分钟前
阿泽发布了新的文献求助10
1分钟前
非我完成签到 ,获得积分0
1分钟前
1分钟前
2分钟前
Zhuyin发布了新的文献求助10
2分钟前
2分钟前
coolru完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310