亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of parallel flow type internally cooled membrane based liquid desiccant dehumidifier using neural networks approach

干燥剂 入口 体积流量 液体干燥剂 人工神经网络 响应面法 流量(数学) 火用 工艺工程 计算流体力学 材料科学 环境科学 机械工程 计算机科学 工程类 机械 人工智能 复合材料 物理 机器学习
作者
Jaimon Dennis Quadros,Sher Afghan Khan,T. Prashanth
出处
期刊:Science and Technology for the Built Environment [Informa]
卷期号:28 (3): 403-421 被引量:1
标识
DOI:10.1080/23744731.2021.1996121
摘要

In this paper, we report an intelligent model based on ANN to optimize the performance of an internally cooled membrane-based liquid desiccant dehumidifier (IMLDD). IMLDD can effectively mitigate dehumidification deterioration caused by changes in the temperature of the desiccant solution. The mediums of desiccant solution and air are isolated by means of a semi-permeable membrane on both sides in the IMLDD. The temperature of the desiccant solution is reduced by the cooling media that flows through the tubes placed within the solution channels. Generally, many fluid flow parameters like air, cooling water, desiccant solution, etc., play a critical role in controlling the performance of an IMLDD. For our study, inlet air temperature (Tai), inlet concentration of the desiccant solution (Cdsi), flow rate of the desiccant solution at the inlet (ṁdsi), and inlet cooling temperature of water (Tcwi) have been considered as the operating parameters/conditions. The outputs or responses namely dehumidification efficiency (ηdh), Exergy efficiency (ηex), and unmatched coefficient (ξum) analyze the performance of the IMLDD. The data comprising of massive input-output was achieved using the response surface methodology (RSM) based central composite design (CCD). Back propagation algorithm (BP), artificial bee colony (ABC), and genetic algorithm (GA) models were used to train the neural network (NN) parameters using the data collected from the CCD based response equation. Forward and reverse mapping models were developed using the trained ANNs. Forward modeling predicts the performance parameters of the IMLDD (i.e., ηdh, ηex, and ξuc) for known combinations of operating parameters (i.e., Tai, Cdsi, ṁdsi, Tcwi). Similarly, reverse modeling aims at predicting the operating conditions for a known set of performance parameters. The performances of the employed NN models were tested using fifteen arbitrarily generated test cases. The experimental and neural network predicted results were found to be in line with each other for both forward and reverse models. The forward modeling results could assist engineers with off-line tracking, by predicting the response without executing experiments. The reverse modeling prediction will aid in dynamically adjusting the operating parameters to achieve the optimal thermodynamic output characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11秒前
冷静的寒荷完成签到 ,获得积分10
14秒前
joy001发布了新的文献求助10
15秒前
zijian应助科研通管家采纳,获得10
17秒前
CipherSage应助joy001采纳,获得30
20秒前
guojingjing完成签到 ,获得积分10
23秒前
白华苍松发布了新的文献求助10
26秒前
46秒前
46秒前
55555发布了新的文献求助30
50秒前
1分钟前
眼中浓缩发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助Chloe采纳,获得10
1分钟前
无名花生完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
Chloe发布了新的文献求助10
2分钟前
淡淡忆之发布了新的文献求助10
2分钟前
Krim完成签到 ,获得积分10
2分钟前
2分钟前
淡淡忆之完成签到,获得积分10
2分钟前
隐形曼青应助Chloe采纳,获得10
2分钟前
2分钟前
jamwu发布了新的文献求助10
2分钟前
2分钟前
Chloe发布了新的文献求助10
3分钟前
Green完成签到,获得积分10
3分钟前
3分钟前
GreenT完成签到,获得积分10
3分钟前
Jasper应助Chloe采纳,获得10
3分钟前
zhangfuchao完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Chloe发布了新的文献求助10
4分钟前
嘻嘻哈哈完成签到,获得积分10
4分钟前
从容芮完成签到,获得积分0
4分钟前
白华苍松发布了新的文献求助10
4分钟前
情怀应助Chloe采纳,获得10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 800
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353489
求助须知:如何正确求助?哪些是违规求助? 2978125
关于积分的说明 8683751
捐赠科研通 2659467
什么是DOI,文献DOI怎么找? 1456257
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665020