Analysis of parallel flow type internally cooled membrane based liquid desiccant dehumidifier using neural networks approach

干燥剂 入口 体积流量 液体干燥剂 人工神经网络 响应面法 流量(数学) 火用 工艺工程 计算流体力学 材料科学 环境科学 机械工程 计算机科学 工程类 机械 人工智能 复合材料 物理 机器学习
作者
Jaimon Dennis Quadros,Sher Afghan Khan,T. Prashanth
出处
期刊:Science and Technology for the Built Environment [Taylor & Francis]
卷期号:28 (3): 403-421 被引量:1
标识
DOI:10.1080/23744731.2021.1996121
摘要

In this paper, we report an intelligent model based on ANN to optimize the performance of an internally cooled membrane-based liquid desiccant dehumidifier (IMLDD). IMLDD can effectively mitigate dehumidification deterioration caused by changes in the temperature of the desiccant solution. The mediums of desiccant solution and air are isolated by means of a semi-permeable membrane on both sides in the IMLDD. The temperature of the desiccant solution is reduced by the cooling media that flows through the tubes placed within the solution channels. Generally, many fluid flow parameters like air, cooling water, desiccant solution, etc., play a critical role in controlling the performance of an IMLDD. For our study, inlet air temperature (Tai), inlet concentration of the desiccant solution (Cdsi), flow rate of the desiccant solution at the inlet (ṁdsi), and inlet cooling temperature of water (Tcwi) have been considered as the operating parameters/conditions. The outputs or responses namely dehumidification efficiency (ηdh), Exergy efficiency (ηex), and unmatched coefficient (ξum) analyze the performance of the IMLDD. The data comprising of massive input-output was achieved using the response surface methodology (RSM) based central composite design (CCD). Back propagation algorithm (BP), artificial bee colony (ABC), and genetic algorithm (GA) models were used to train the neural network (NN) parameters using the data collected from the CCD based response equation. Forward and reverse mapping models were developed using the trained ANNs. Forward modeling predicts the performance parameters of the IMLDD (i.e., ηdh, ηex, and ξuc) for known combinations of operating parameters (i.e., Tai, Cdsi, ṁdsi, Tcwi). Similarly, reverse modeling aims at predicting the operating conditions for a known set of performance parameters. The performances of the employed NN models were tested using fifteen arbitrarily generated test cases. The experimental and neural network predicted results were found to be in line with each other for both forward and reverse models. The forward modeling results could assist engineers with off-line tracking, by predicting the response without executing experiments. The reverse modeling prediction will aid in dynamically adjusting the operating parameters to achieve the optimal thermodynamic output characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
A徽发布了新的文献求助10
刚刚
1秒前
想想完成签到 ,获得积分10
1秒前
S77发布了新的文献求助10
1秒前
深情安青应助元元369采纳,获得10
1秒前
黄丽珍关注了科研通微信公众号
2秒前
慕青应助伶俐的以筠采纳,获得10
2秒前
Anthone发布了新的文献求助10
2秒前
olly完成签到,获得积分10
2秒前
Billy应助成就的雅彤采纳,获得30
2秒前
Infinity发布了新的文献求助30
2秒前
3秒前
是乐乐呀完成签到,获得积分10
3秒前
3秒前
SciGPT应助foceman采纳,获得10
3秒前
窦慕卉完成签到,获得积分10
3秒前
charles发布了新的文献求助10
4秒前
所所应助tds采纳,获得10
5秒前
zhyi发布了新的文献求助10
5秒前
共享精神应助1234采纳,获得10
5秒前
5秒前
姚耀发布了新的文献求助10
5秒前
Whc发布了新的文献求助30
6秒前
斯文败类应助yukuai采纳,获得10
8秒前
CodeCraft应助tomorrow采纳,获得10
9秒前
万能图书馆应助ciooli采纳,获得10
9秒前
搜集达人应助yuebaoji采纳,获得10
9秒前
怡然幻然完成签到,获得积分10
10秒前
姚一发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
Hello应助uglyboy采纳,获得30
11秒前
寒色完成签到,获得积分10
11秒前
12秒前
tt发布了新的文献求助10
12秒前
13秒前
13秒前
tds完成签到,获得积分10
15秒前
15秒前
16秒前
CodeCraft应助zyy采纳,获得10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126