清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN

计算机科学 管道运输 融合 材料科学 工程类 哲学 语言学 环境工程
作者
Duo Ma,Jianhua Liu,Hongyuan Fang,Niannian Wang,Chao Zhang,Zhaonan Li,Jiaxiu Dong
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:312: 125385-125385 被引量:13
标识
DOI:10.1016/j.conbuildmat.2021.125385
摘要

• A multi-defect detection system for sewer pipelines based on StyleGAN v2 and fusion CNN is proposed. • A multi-defeat image generation model, called StyleGAN-SDM, is proposed by integrating StyleGAN v2 and sharpness discrimination model (SDM) to generate multi-defeat images and automatically select clear images. • A multi-defect classification model (MDCM) based on fusion CNN, which combines the Inception network architecture and the Residual network architecture, is proposed to classify the on-site images into four categories. • On-site video detection for multiple defects is realized by the computer vision library of OpenCV. With the development of deep learning, convolutional neural networks (CNN) have been gradually used in pipeline defeats detection. However, due to the complex environment inside the pipeline, few defeat images are not enough for the training of CNN. A multi-defect detection system based on StyleGAN-SDM and fusion CNN for sewer pipelines is proposed in this paper. First, aiming at the problem of data acquisition and small data volume, raw images are preprocessed by StyleGAN-SDM, which integrates StyleGAN v2 and sharpness discrimination model (SDM) to generate multi-defect images and automatically select clear images. The indexes of Inception-Residual score (IRS), accuracy and macro-F1 score to evaluate the quality of the images generated are 2.968 ± 0.024, 99.64%, and 0.997, respectively. Second, to improve the detection accuracy, a multi-defect classification model (MDCM) based on fusion CNN, which combines Inception network and Residual network, is proposed to classify the on-site images into four categories. Third, compared with conventional deep-learning methods, the mean accuracy and macro-F1 score of the proposed model reach 95.64% and 0.955, which are increased by 1.51% and 0.015 by StyleGAN-SDM, respectively. Finally, to solve the timeliness problem of on-site detection, a real-time multi-defeat detection system for sewer pipelines is established with the computer vision library of OpenCV. Some on-site videos are detected with the mean speed of 24.11 FPS and these results could aid the staff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄光完成签到,获得积分10
3秒前
6秒前
gaoxiaogao完成签到 ,获得积分10
11秒前
xun发布了新的文献求助10
13秒前
潇洒的语蝶完成签到 ,获得积分10
14秒前
思源应助xun采纳,获得10
20秒前
26秒前
大熊发布了新的文献求助10
31秒前
老宇126完成签到,获得积分10
31秒前
33秒前
xun发布了新的文献求助10
39秒前
Lucas应助xun采纳,获得10
46秒前
宸浅完成签到 ,获得积分10
50秒前
清净163完成签到,获得积分10
58秒前
1分钟前
xun发布了新的文献求助10
1分钟前
Jasen完成签到 ,获得积分10
1分钟前
晓薇完成签到,获得积分10
1分钟前
清净126完成签到 ,获得积分10
1分钟前
念念完成签到 ,获得积分10
1分钟前
慕青应助xun采纳,获得10
1分钟前
来一斤这种鱼完成签到 ,获得积分10
1分钟前
Judy完成签到 ,获得积分0
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
郑雅柔完成签到 ,获得积分10
2分钟前
fly发布了新的文献求助10
2分钟前
爆米花应助xun采纳,获得10
2分钟前
herpes完成签到 ,获得积分0
2分钟前
小炮仗完成签到 ,获得积分10
2分钟前
不甜的唐完成签到,获得积分10
2分钟前
Kevin发布了新的文献求助10
3分钟前
酶没美镁完成签到,获得积分10
3分钟前
失眠的安卉完成签到,获得积分10
3分钟前
小鱼女侠完成签到 ,获得积分10
3分钟前
姜姜完成签到 ,获得积分10
3分钟前
Jack Wong发布了新的文献求助10
4分钟前
4分钟前
xun发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162359
求助须知:如何正确求助?哪些是违规求助? 2813331
关于积分的说明 7899783
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316544
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142