重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A Multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN

计算机科学 管道运输 融合 材料科学 工程类 哲学 语言学 环境工程
作者
Duo Ma,Jianhua Liu,Hongyuan Fang,Niannian Wang,Chao Zhang,Zhaonan Li,Jiaxiu Dong
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:312: 125385-125385 被引量:13
标识
DOI:10.1016/j.conbuildmat.2021.125385
摘要

• A multi-defect detection system for sewer pipelines based on StyleGAN v2 and fusion CNN is proposed. • A multi-defeat image generation model, called StyleGAN-SDM, is proposed by integrating StyleGAN v2 and sharpness discrimination model (SDM) to generate multi-defeat images and automatically select clear images. • A multi-defect classification model (MDCM) based on fusion CNN, which combines the Inception network architecture and the Residual network architecture, is proposed to classify the on-site images into four categories. • On-site video detection for multiple defects is realized by the computer vision library of OpenCV. With the development of deep learning, convolutional neural networks (CNN) have been gradually used in pipeline defeats detection. However, due to the complex environment inside the pipeline, few defeat images are not enough for the training of CNN. A multi-defect detection system based on StyleGAN-SDM and fusion CNN for sewer pipelines is proposed in this paper. First, aiming at the problem of data acquisition and small data volume, raw images are preprocessed by StyleGAN-SDM, which integrates StyleGAN v2 and sharpness discrimination model (SDM) to generate multi-defect images and automatically select clear images. The indexes of Inception-Residual score (IRS), accuracy and macro-F1 score to evaluate the quality of the images generated are 2.968 ± 0.024, 99.64%, and 0.997, respectively. Second, to improve the detection accuracy, a multi-defect classification model (MDCM) based on fusion CNN, which combines Inception network and Residual network, is proposed to classify the on-site images into four categories. Third, compared with conventional deep-learning methods, the mean accuracy and macro-F1 score of the proposed model reach 95.64% and 0.955, which are increased by 1.51% and 0.015 by StyleGAN-SDM, respectively. Finally, to solve the timeliness problem of on-site detection, a real-time multi-defeat detection system for sewer pipelines is established with the computer vision library of OpenCV. Some on-site videos are detected with the mean speed of 24.11 FPS and these results could aid the staff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助学术混子采纳,获得10
刚刚
coffee发布了新的文献求助10
刚刚
刚刚
bigfish发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
科研通AI6应助王三采纳,获得10
2秒前
SciGPT应助好运6连采纳,获得10
2秒前
耍酷乐蕊完成签到,获得积分10
2秒前
阿达我的发布了新的文献求助10
3秒前
英俊的铭应助任虎采纳,获得10
3秒前
飞云之下发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
pluto应助释青春采纳,获得10
5秒前
5秒前
5秒前
5秒前
优雅草莓完成签到,获得积分10
5秒前
好好学习完成签到,获得积分10
6秒前
7秒前
7秒前
CipherSage应助tyt采纳,获得10
7秒前
8秒前
山城小丸完成签到,获得积分10
9秒前
谢小草发布了新的文献求助10
9秒前
9秒前
10秒前
FashionBoy应助飞云之下采纳,获得10
10秒前
浮游窥天完成签到,获得积分10
10秒前
10秒前
醉熏的蓝血完成签到 ,获得积分10
11秒前
12秒前
12秒前
chenshu1发布了新的文献求助20
13秒前
王大水果发布了新的文献求助10
13秒前
熊大完成签到,获得积分10
13秒前
13秒前
SamYang发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465782
求助须知:如何正确求助?哪些是违规求助? 4570071
关于积分的说明 14322268
捐赠科研通 4496512
什么是DOI,文献DOI怎么找? 2463355
邀请新用户注册赠送积分活动 1452285
关于科研通互助平台的介绍 1427497