亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-defect detection system for sewer pipelines based on StyleGAN-SDM and fusion CNN

计算机科学 管道运输 融合 材料科学 工程类 哲学 语言学 环境工程
作者
Duo Ma,Jianhua Liu,Hongyuan Fang,Niannian Wang,Chao Zhang,Zhaonan Li,Jiaxiu Dong
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:312: 125385-125385 被引量:13
标识
DOI:10.1016/j.conbuildmat.2021.125385
摘要

• A multi-defect detection system for sewer pipelines based on StyleGAN v2 and fusion CNN is proposed. • A multi-defeat image generation model, called StyleGAN-SDM, is proposed by integrating StyleGAN v2 and sharpness discrimination model (SDM) to generate multi-defeat images and automatically select clear images. • A multi-defect classification model (MDCM) based on fusion CNN, which combines the Inception network architecture and the Residual network architecture, is proposed to classify the on-site images into four categories. • On-site video detection for multiple defects is realized by the computer vision library of OpenCV. With the development of deep learning, convolutional neural networks (CNN) have been gradually used in pipeline defeats detection. However, due to the complex environment inside the pipeline, few defeat images are not enough for the training of CNN. A multi-defect detection system based on StyleGAN-SDM and fusion CNN for sewer pipelines is proposed in this paper. First, aiming at the problem of data acquisition and small data volume, raw images are preprocessed by StyleGAN-SDM, which integrates StyleGAN v2 and sharpness discrimination model (SDM) to generate multi-defect images and automatically select clear images. The indexes of Inception-Residual score (IRS), accuracy and macro-F1 score to evaluate the quality of the images generated are 2.968 ± 0.024, 99.64%, and 0.997, respectively. Second, to improve the detection accuracy, a multi-defect classification model (MDCM) based on fusion CNN, which combines Inception network and Residual network, is proposed to classify the on-site images into four categories. Third, compared with conventional deep-learning methods, the mean accuracy and macro-F1 score of the proposed model reach 95.64% and 0.955, which are increased by 1.51% and 0.015 by StyleGAN-SDM, respectively. Finally, to solve the timeliness problem of on-site detection, a real-time multi-defeat detection system for sewer pipelines is established with the computer vision library of OpenCV. Some on-site videos are detected with the mean speed of 24.11 FPS and these results could aid the staff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moiumuio完成签到,获得积分10
5秒前
9239完成签到 ,获得积分10
8秒前
SciGPT应助小鹿采纳,获得10
23秒前
24秒前
26秒前
认真映真发布了新的文献求助10
47秒前
葉鳳怡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
张张完成签到 ,获得积分10
1分钟前
认真映真完成签到,获得积分10
1分钟前
1分钟前
令宏发布了新的文献求助30
1分钟前
1分钟前
2分钟前
昌莆完成签到 ,获得积分10
2分钟前
2220完成签到 ,获得积分10
2分钟前
科研通AI5应助令宏采纳,获得30
2分钟前
江上游完成签到 ,获得积分10
2分钟前
2分钟前
小二郎应助傲娇的冷霜采纳,获得20
2分钟前
2分钟前
FashionBoy应助西瓜二郎采纳,获得30
2分钟前
赘婿应助傲娇的冷霜采纳,获得30
2分钟前
2分钟前
昔年若许完成签到,获得积分10
2分钟前
西瓜二郎发布了新的文献求助30
2分钟前
2分钟前
科研通AI5应助jacs111采纳,获得10
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
3分钟前
直率的笑翠完成签到 ,获得积分10
3分钟前
3分钟前
jacs111发布了新的文献求助10
3分钟前
Jimmy完成签到 ,获得积分10
3分钟前
脑洞疼应助儒雅老太采纳,获得10
3分钟前
闪闪蜜粉完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
hkxfg发布了新的文献求助10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510902
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214