Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China

植被(病理学) 环境科学 人口 气候变化 自然地理学 北京 绿化 地理 中国 生态学 气候学 环境保护 考古 病理 社会学 生物 人口学 医学 地质学
作者
Meichen Jiang,Yuexin He,Conghe Song,Yuepeng Pan,Tong Qiu,Shufang Tian
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:786: 147574-147574 被引量:37
标识
DOI:10.1016/j.scitotenv.2021.147574
摘要

The Beijing-Tianjin-Hebei (BTH) region of China is a typical area where both population and economy have been increasing rapidly in recent decades. The rapid economic development and population increase also bring severe environmental stresses. To better understand the factors that contribute to the regional ecological environment change, this study aims to disaggregate the effects of climate and human activity on vegetation dynamics based on a vegetation index derived from remote sensing for the BTH region through time. First, we implemented a linear regression analysis on the Enhanced Vegetation Index (EVI) in the BTH region from 2001 to 2015. We found vegetation greening mainly occurred in the mountainous area in the north and the west of the BTH region, where the forests and grasslands dominate, and the vegetation browning was mainly distributed in the southeast, where the built-up lands and croplands were located. Then, we used the Random Forest (RF) regression model to rank the importance of the climatic and anthropogenic factors. The results showed that temperature was the most influential factor among our climate variables while land cover dominated the anthropogenic variables. Finally, this study applied the RF model to disaggregate the climatic effects from that of the anthropogenic effects on vegetation dynamics by keeping human-activity- or climate-related variables constant. It showed that the method was capable of quantifying climatic and anthropogenic effects on vegetation changes. This study also found that the N deposition significantly negatively correlated with the vegetation growth trend in BTH. The approach this study proposed advanced our understanding of the driving factors of vegetation dynamics, and the approach is applicable elsewhere.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥粥发布了新的文献求助20
刚刚
俞晓完成签到 ,获得积分10
刚刚
刚刚
低温少年发布了新的文献求助10
刚刚
拓峰伟完成签到,获得积分10
1秒前
sunshine完成签到,获得积分10
2秒前
peng关注了科研通微信公众号
3秒前
小孟同学greta完成签到,获得积分10
4秒前
5秒前
sdniuidifod发布了新的文献求助10
5秒前
6秒前
俏皮的匕完成签到,获得积分10
6秒前
6秒前
充电宝应助zmy采纳,获得10
6秒前
火星完成签到,获得积分10
6秒前
美满向薇完成签到,获得积分20
7秒前
阳光千亦完成签到,获得积分10
7秒前
xW12123完成签到,获得积分10
8秒前
kitsch完成签到 ,获得积分10
8秒前
星辰大海应助FLZLC采纳,获得10
8秒前
juanjie发布了新的文献求助10
8秒前
英姑应助chihiro采纳,获得10
8秒前
9秒前
青青小筑发布了新的文献求助10
9秒前
zhang完成签到 ,获得积分20
9秒前
豆豆发布了新的文献求助10
9秒前
科目三应助岳婷采纳,获得10
10秒前
哆啦A梦完成签到,获得积分10
11秒前
深情冬云应助害怕的尔丝采纳,获得10
11秒前
科研通AI6应助美满向薇采纳,获得10
11秒前
sjll发布了新的文献求助10
13秒前
在水一方应助清爽的采萱采纳,获得10
13秒前
13秒前
13秒前
华花花发布了新的文献求助10
13秒前
科研通AI6应助细致且入微采纳,获得10
13秒前
14秒前
14秒前
14秒前
粥粥完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619177
求助须知:如何正确求助?哪些是违规求助? 4703952
关于积分的说明 14925213
捐赠科研通 4759305
什么是DOI,文献DOI怎么找? 2550439
邀请新用户注册赠送积分活动 1513156
关于科研通互助平台的介绍 1474401