Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China

植被(病理学) 环境科学 人口 气候变化 自然地理学 北京 绿化 地理 中国 生态学 气候学 环境保护 医学 生物 地质学 病理 社会学 人口学 考古
作者
Meichen Jiang,Yuexin He,Conghe Song,Yuepeng Pan,Tong Qiu,Shufang Tian
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:786: 147574-147574 被引量:37
标识
DOI:10.1016/j.scitotenv.2021.147574
摘要

The Beijing-Tianjin-Hebei (BTH) region of China is a typical area where both population and economy have been increasing rapidly in recent decades. The rapid economic development and population increase also bring severe environmental stresses. To better understand the factors that contribute to the regional ecological environment change, this study aims to disaggregate the effects of climate and human activity on vegetation dynamics based on a vegetation index derived from remote sensing for the BTH region through time. First, we implemented a linear regression analysis on the Enhanced Vegetation Index (EVI) in the BTH region from 2001 to 2015. We found vegetation greening mainly occurred in the mountainous area in the north and the west of the BTH region, where the forests and grasslands dominate, and the vegetation browning was mainly distributed in the southeast, where the built-up lands and croplands were located. Then, we used the Random Forest (RF) regression model to rank the importance of the climatic and anthropogenic factors. The results showed that temperature was the most influential factor among our climate variables while land cover dominated the anthropogenic variables. Finally, this study applied the RF model to disaggregate the climatic effects from that of the anthropogenic effects on vegetation dynamics by keeping human-activity- or climate-related variables constant. It showed that the method was capable of quantifying climatic and anthropogenic effects on vegetation changes. This study also found that the N deposition significantly negatively correlated with the vegetation growth trend in BTH. The approach this study proposed advanced our understanding of the driving factors of vegetation dynamics, and the approach is applicable elsewhere.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特笙发布了新的文献求助10
2秒前
搜集达人应助daididexhl采纳,获得10
3秒前
开放诗筠完成签到,获得积分10
3秒前
4秒前
科研螺丝发布了新的文献求助10
5秒前
5秒前
spinning完成签到,获得积分10
5秒前
tengfei完成签到 ,获得积分10
6秒前
zbumian发布了新的文献求助10
8秒前
嘻嘻发布了新的文献求助10
10秒前
11秒前
鸡毛完成签到,获得积分10
11秒前
科研通AI2S应助可爱山彤采纳,获得10
12秒前
chx2256120完成签到,获得积分10
13秒前
13秒前
13秒前
二月兰完成签到 ,获得积分10
14秒前
14秒前
zbumian完成签到,获得积分10
14秒前
Jason完成签到,获得积分10
15秒前
李白发布了新的文献求助10
17秒前
大模型应助两百斤胖子采纳,获得10
17秒前
热爱完成签到,获得积分20
18秒前
19秒前
开放诗筠发布了新的文献求助10
19秒前
七喜发布了新的文献求助10
19秒前
hmfyl完成签到,获得积分10
20秒前
21秒前
嘻嘻完成签到,获得积分20
22秒前
22秒前
李健应助李白采纳,获得10
24秒前
HMBB完成签到,获得积分10
26秒前
完美世界应助knn采纳,获得10
27秒前
28秒前
30秒前
30秒前
PANSIXUAN完成签到,获得积分10
31秒前
25号底片完成签到,获得积分10
33秒前
hmx发布了新的文献求助30
34秒前
34秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137758
求助须知:如何正确求助?哪些是违规求助? 2788672
关于积分的说明 7787968
捐赠科研通 2445026
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043