Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China

植被(病理学) 环境科学 人口 气候变化 自然地理学 北京 绿化 地理 中国 生态学 气候学 环境保护 考古 病理 社会学 生物 人口学 医学 地质学
作者
Meichen Jiang,Yuexin He,Conghe Song,Yuepeng Pan,Tong Qiu,Shufang Tian
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:786: 147574-147574 被引量:37
标识
DOI:10.1016/j.scitotenv.2021.147574
摘要

The Beijing-Tianjin-Hebei (BTH) region of China is a typical area where both population and economy have been increasing rapidly in recent decades. The rapid economic development and population increase also bring severe environmental stresses. To better understand the factors that contribute to the regional ecological environment change, this study aims to disaggregate the effects of climate and human activity on vegetation dynamics based on a vegetation index derived from remote sensing for the BTH region through time. First, we implemented a linear regression analysis on the Enhanced Vegetation Index (EVI) in the BTH region from 2001 to 2015. We found vegetation greening mainly occurred in the mountainous area in the north and the west of the BTH region, where the forests and grasslands dominate, and the vegetation browning was mainly distributed in the southeast, where the built-up lands and croplands were located. Then, we used the Random Forest (RF) regression model to rank the importance of the climatic and anthropogenic factors. The results showed that temperature was the most influential factor among our climate variables while land cover dominated the anthropogenic variables. Finally, this study applied the RF model to disaggregate the climatic effects from that of the anthropogenic effects on vegetation dynamics by keeping human-activity- or climate-related variables constant. It showed that the method was capable of quantifying climatic and anthropogenic effects on vegetation changes. This study also found that the N deposition significantly negatively correlated with the vegetation growth trend in BTH. The approach this study proposed advanced our understanding of the driving factors of vegetation dynamics, and the approach is applicable elsewhere.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伟大毕业旅程完成签到 ,获得积分10
刚刚
刚刚
刚刚
皛宁发布了新的文献求助10
1秒前
1秒前
1秒前
隐形曼青应助王艺霖采纳,获得10
1秒前
1秒前
健康的海完成签到,获得积分20
1秒前
FashionBoy应助小粉红wow~~~采纳,获得10
2秒前
华仔应助wpp采纳,获得10
2秒前
王钰绮发布了新的文献求助10
2秒前
专注鸡完成签到,获得积分10
2秒前
十三应助HTF采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
侯森发布了新的文献求助10
4秒前
负责御姐完成签到,获得积分10
4秒前
lh完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助风中泰坦采纳,获得10
5秒前
6秒前
6秒前
林子昂发布了新的文献求助10
7秒前
WTL完成签到,获得积分10
7秒前
8秒前
CodeCraft应助dong采纳,获得10
8秒前
三十发布了新的文献求助10
8秒前
123发布了新的文献求助10
9秒前
LJM发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
七七发布了新的文献求助10
9秒前
善学以致用应助yzr采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731