Prototype transfer generative adversarial network for unsupervised breast cancer histology image classification

判别式 计算机科学 人工智能 学习迁移 模式识别(心理学) 机器学习 特征学习 深度学习 公制(单位) 特征向量 对抗制 乳腺癌 人工神经网络 乳腺摄影术 分类器(UML) 癌症 医学 运营管理 内科学 经济
作者
Dan Wang,Zhen Chen,Hongwei Zhao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:68: 102713-102713 被引量:11
标识
DOI:10.1016/j.bspc.2021.102713
摘要

Breast cancer (BC) has become a common tumor that threatens women's health. The decision on the treatment for breast cancer depends on multi-classification. Therefore, for preventive diagnosis, the development of automatic malignant BC detection system suitable for patient imaging can reduce the burden on pathologists and help avoid misdiagnosis. At present, most of the research methods are supervised learning methods that require lots of labeled data, and annotating histology images is more difficult and expensive due to the complicated disease representation in breast cancer. In this paper, we propose an unsupervised learning method, named prototype transfer generative adversarial network (PTGAN), which embeds generative adversarial networks and prototypical networks for classifying a large number of data sets by training a transfer learning model from a small number of labeled source data sets from similar domain. Without requiring lots of labeled target images, this method also reduces the style difference between the source and target domains by generating an adversarial network, thereby it can effectively reduce the pixel-level distribution gap for breast histology images captured from different devices with individual style. Then, it embeds the feature vectors learned by a prototype network into the metric space, which can distil discriminative knowledge from the prototype into target domain. We then use a special “distance” in the metric space to train a classifier to predict the large amounts of target data. The experimental results on the BreakHis dataset show that the accuracy of the proposed PTGAN for classifying benign and malignant tissues has reached nearly 90%. This proves the advantage of our method in providing an effective tool for breast cancer multi-classification in clinical settings, economizing the complicated annotating cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尽平梅愿完成签到 ,获得积分10
1秒前
赘婿应助李书荣采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
hi应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
lascqy完成签到 ,获得积分10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
pluto应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
4秒前
hanna完成签到,获得积分20
4秒前
6秒前
6秒前
ke完成签到,获得积分10
7秒前
孙兆杰完成签到,获得积分10
8秒前
hahahaweiwei发布了新的文献求助10
8秒前
8秒前
LMY完成签到 ,获得积分10
11秒前
李书荣发布了新的文献求助10
11秒前
温婉的香水完成签到 ,获得积分10
12秒前
充电宝应助无奈苡采纳,获得10
13秒前
QQ发布了新的文献求助10
13秒前
李书荣发布了新的文献求助10
13秒前
科研通AI5应助美满的菠萝采纳,获得10
16秒前
完美世界应助son采纳,获得10
16秒前
Tianling完成签到,获得积分0
17秒前
Ww发布了新的文献求助10
21秒前
22秒前
NexusExplorer应助kevin采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268