Prototype transfer generative adversarial network for unsupervised breast cancer histology image classification

判别式 计算机科学 人工智能 学习迁移 模式识别(心理学) 机器学习 特征学习 深度学习 公制(单位) 特征向量 对抗制 乳腺癌 人工神经网络 乳腺摄影术 分类器(UML) 癌症 医学 内科学 经济 运营管理
作者
Dan Wang,Zhen Chen,Hongwei Zhao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102713-102713 被引量:11
标识
DOI:10.1016/j.bspc.2021.102713
摘要

Breast cancer (BC) has become a common tumor that threatens women's health. The decision on the treatment for breast cancer depends on multi-classification. Therefore, for preventive diagnosis, the development of automatic malignant BC detection system suitable for patient imaging can reduce the burden on pathologists and help avoid misdiagnosis. At present, most of the research methods are supervised learning methods that require lots of labeled data, and annotating histology images is more difficult and expensive due to the complicated disease representation in breast cancer. In this paper, we propose an unsupervised learning method, named prototype transfer generative adversarial network (PTGAN), which embeds generative adversarial networks and prototypical networks for classifying a large number of data sets by training a transfer learning model from a small number of labeled source data sets from similar domain. Without requiring lots of labeled target images, this method also reduces the style difference between the source and target domains by generating an adversarial network, thereby it can effectively reduce the pixel-level distribution gap for breast histology images captured from different devices with individual style. Then, it embeds the feature vectors learned by a prototype network into the metric space, which can distil discriminative knowledge from the prototype into target domain. We then use a special “distance” in the metric space to train a classifier to predict the large amounts of target data. The experimental results on the BreakHis dataset show that the accuracy of the proposed PTGAN for classifying benign and malignant tissues has reached nearly 90%. This proves the advantage of our method in providing an effective tool for breast cancer multi-classification in clinical settings, economizing the complicated annotating cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
shfgref完成签到,获得积分10
4秒前
昴星引路完成签到 ,获得积分20
4秒前
重要白山完成签到,获得积分10
5秒前
Hedy完成签到 ,获得积分10
8秒前
lx完成签到,获得积分10
9秒前
天真的嚓茶完成签到,获得积分10
10秒前
11秒前
14秒前
乐乐应助游泳的烤鸭采纳,获得10
15秒前
搞怪沛白完成签到,获得积分10
15秒前
CY发布了新的文献求助10
16秒前
Kawhichan完成签到,获得积分10
16秒前
16秒前
英姑应助帮帮我采纳,获得10
16秒前
17秒前
iu完成签到,获得积分10
17秒前
Myx完成签到,获得积分10
18秒前
伶俐一曲完成签到,获得积分10
18秒前
四月完成签到 ,获得积分10
19秒前
虎荣荣发布了新的文献求助10
19秒前
李彦完成签到,获得积分10
19秒前
繁荣的秋完成签到,获得积分20
20秒前
江氏巨颏虎完成签到,获得积分10
20秒前
21秒前
劲秉应助落寞芷巧采纳,获得10
23秒前
萧布完成签到,获得积分10
25秒前
WJJ发布了新的文献求助10
26秒前
minminzi完成签到,获得积分10
29秒前
顺心从安完成签到,获得积分10
33秒前
JxJ完成签到,获得积分10
33秒前
闪闪的妙竹完成签到 ,获得积分10
33秒前
celia完成签到 ,获得积分10
35秒前
36秒前
yingqing完成签到 ,获得积分10
39秒前
LIVE完成签到,获得积分10
43秒前
浅尝离白应助lu采纳,获得30
43秒前
43秒前
45秒前
虞0619完成签到,获得积分10
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291672
求助须知:如何正确求助?哪些是违规求助? 2928139
关于积分的说明 8435753
捐赠科研通 2600030
什么是DOI,文献DOI怎么找? 1418904
科研通“疑难数据库(出版商)”最低求助积分说明 660150
邀请新用户注册赠送积分活动 642808