亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prototype transfer generative adversarial network for unsupervised breast cancer histology image classification

判别式 计算机科学 人工智能 学习迁移 模式识别(心理学) 机器学习 特征学习 深度学习 公制(单位) 特征向量 对抗制 乳腺癌 人工神经网络 乳腺摄影术 分类器(UML) 癌症 医学 运营管理 内科学 经济
作者
Dan Wang,Zhen Chen,Hongwei Zhao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102713-102713 被引量:11
标识
DOI:10.1016/j.bspc.2021.102713
摘要

Breast cancer (BC) has become a common tumor that threatens women's health. The decision on the treatment for breast cancer depends on multi-classification. Therefore, for preventive diagnosis, the development of automatic malignant BC detection system suitable for patient imaging can reduce the burden on pathologists and help avoid misdiagnosis. At present, most of the research methods are supervised learning methods that require lots of labeled data, and annotating histology images is more difficult and expensive due to the complicated disease representation in breast cancer. In this paper, we propose an unsupervised learning method, named prototype transfer generative adversarial network (PTGAN), which embeds generative adversarial networks and prototypical networks for classifying a large number of data sets by training a transfer learning model from a small number of labeled source data sets from similar domain. Without requiring lots of labeled target images, this method also reduces the style difference between the source and target domains by generating an adversarial network, thereby it can effectively reduce the pixel-level distribution gap for breast histology images captured from different devices with individual style. Then, it embeds the feature vectors learned by a prototype network into the metric space, which can distil discriminative knowledge from the prototype into target domain. We then use a special “distance” in the metric space to train a classifier to predict the large amounts of target data. The experimental results on the BreakHis dataset show that the accuracy of the proposed PTGAN for classifying benign and malignant tissues has reached nearly 90%. This proves the advantage of our method in providing an effective tool for breast cancer multi-classification in clinical settings, economizing the complicated annotating cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
Raunio发布了新的文献求助10
20秒前
舒服的幼荷完成签到,获得积分10
30秒前
33秒前
38秒前
尤里有气完成签到,获得积分10
54秒前
Jenny发布了新的文献求助10
1分钟前
Jenny完成签到,获得积分10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
hui发布了新的文献求助30
3分钟前
4分钟前
研友_VZG7GZ应助sy采纳,获得10
4分钟前
xiaofeixia完成签到 ,获得积分10
4分钟前
wada3n完成签到,获得积分10
5分钟前
5分钟前
我很好完成签到 ,获得积分10
6分钟前
bkagyin应助中原第一深情采纳,获得10
6分钟前
elsa622完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
情怀应助RC采纳,获得10
7分钟前
7分钟前
红火完成签到 ,获得积分10
7分钟前
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
浔初先生完成签到,获得积分10
8分钟前
胖小羊完成签到 ,获得积分10
8分钟前
8分钟前
RC发布了新的文献求助10
8分钟前
8分钟前
8分钟前
自律发布了新的文献求助10
9分钟前
纯真的柔发布了新的文献求助10
9分钟前
李健应助纯真的柔采纳,获得10
9分钟前
BowieHuang应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633344
什么是DOI,文献DOI怎么找? 2532825
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723