Prototype transfer generative adversarial network for unsupervised breast cancer histology image classification

判别式 计算机科学 人工智能 学习迁移 模式识别(心理学) 机器学习 特征学习 深度学习 公制(单位) 特征向量 对抗制 乳腺癌 人工神经网络 乳腺摄影术 分类器(UML) 癌症 医学 运营管理 内科学 经济
作者
Dan Wang,Zhen Chen,Hongwei Zhao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102713-102713 被引量:11
标识
DOI:10.1016/j.bspc.2021.102713
摘要

Breast cancer (BC) has become a common tumor that threatens women's health. The decision on the treatment for breast cancer depends on multi-classification. Therefore, for preventive diagnosis, the development of automatic malignant BC detection system suitable for patient imaging can reduce the burden on pathologists and help avoid misdiagnosis. At present, most of the research methods are supervised learning methods that require lots of labeled data, and annotating histology images is more difficult and expensive due to the complicated disease representation in breast cancer. In this paper, we propose an unsupervised learning method, named prototype transfer generative adversarial network (PTGAN), which embeds generative adversarial networks and prototypical networks for classifying a large number of data sets by training a transfer learning model from a small number of labeled source data sets from similar domain. Without requiring lots of labeled target images, this method also reduces the style difference between the source and target domains by generating an adversarial network, thereby it can effectively reduce the pixel-level distribution gap for breast histology images captured from different devices with individual style. Then, it embeds the feature vectors learned by a prototype network into the metric space, which can distil discriminative knowledge from the prototype into target domain. We then use a special “distance” in the metric space to train a classifier to predict the large amounts of target data. The experimental results on the BreakHis dataset show that the accuracy of the proposed PTGAN for classifying benign and malignant tissues has reached nearly 90%. This proves the advantage of our method in providing an effective tool for breast cancer multi-classification in clinical settings, economizing the complicated annotating cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大力蚂蚁完成签到,获得积分10
1秒前
1秒前
科研通AI6应助老王采纳,获得10
1秒前
协和_子鱼完成签到,获得积分0
1秒前
2秒前
小郭发布了新的文献求助10
3秒前
Ava应助punch采纳,获得10
4秒前
rosid完成签到,获得积分10
4秒前
zhuangbaobao发布了新的文献求助10
5秒前
荷兰香猪发布了新的文献求助10
5秒前
5秒前
善学以致用应助北极星采纳,获得10
6秒前
bkagyin应助jjjjjjj采纳,获得10
6秒前
席茹妖完成签到,获得积分10
6秒前
万能图书馆应助小辛采纳,获得10
7秒前
7秒前
7秒前
负责的皮卡丘应助麦子采纳,获得10
7秒前
8秒前
科研通AI6应助淡定的以寒采纳,获得10
10秒前
10秒前
10秒前
告元完成签到,获得积分10
10秒前
BTW发布了新的文献求助10
11秒前
11秒前
mang完成签到 ,获得积分10
11秒前
guo发布了新的文献求助10
11秒前
11秒前
12秒前
科目三应助拼搏的帆布鞋采纳,获得10
12秒前
小灰灰完成签到,获得积分10
13秒前
汉堡包应助小奇采纳,获得10
13秒前
13秒前
13秒前
14秒前
Lamis完成签到 ,获得积分10
14秒前
tgoutgou完成签到,获得积分10
15秒前
15秒前
min发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420251
求助须知:如何正确求助?哪些是违规求助? 4535385
关于积分的说明 14149881
捐赠科研通 4452462
什么是DOI,文献DOI怎么找? 2442152
邀请新用户注册赠送积分活动 1433648
关于科研通互助平台的介绍 1410945