Acoustic Droplet-Assisted Superhydrophilic–Superhydrophobic Microarray Platform for High-Throughput Screening of Patient-Derived Tumor Spheroids

材料科学 超亲水性 吞吐量 球体 纳米技术 复合材料 计算机科学 润湿 电信 无线 生物化学 化学 体外
作者
Yu Xia,Hui Chen,Juan Li,Hang Hu,Qun Qian,Rongxiang He,Zhao Ding,Shishang Guo
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (20): 23489-23501 被引量:25
标识
DOI:10.1021/acsami.1c06655
摘要

Cell-based high-throughput screening is a key step in the current disease-based research, drug development, and precision medicine. However, it is challenging to establish a rapid culture and screening platform for rare cells (patient-derived) due to the obvious differences between the traditional 2D cell model and the tumor microenvironment, as well as the lack of a low-consumption screening platform for low numbers of cells. Here, we developed an acoustic drop-assisted superhydrophilic–superhydrophobic microarray platform for the rapid culture and screening of a few cells. By employing hydrophilic and hydrophobic microarrays, we can automatically distribute the cell suspension into uniform droplets, and these cells can spontaneously form compact 3D cell spheroids within 36 h (similar to the microenvironment of tumors in vivo). By using the acoustic droplet ejection device, we can accurately inject a drug solution with a volume of ∼pL to ∼nL into the droplet, and the whole process can be completed within 20 ms (one print). By using three different cell lines (Caco-2, MCF-7, and HeLa) to optimize the platform, the culture and screening of five patients' colon cancer were subsequently realized. Using three conventional chemotherapeutics (5-fluorouracil, cetuximab, and panitumumab) of various concentrations, the best treatment was screened out and compared with the actual treatment effect of the patients, and the results were extremely similar. As a proof-of-concept application, we have proved that our platform can quickly cultivate patient samples and effectively screen the best treatment methods, highlighting its wide application in precision medicine, basic tumor research, and drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴山兰发布了新的文献求助10
1秒前
3秒前
3秒前
完美世界应助zichen采纳,获得10
3秒前
Zhoujian发布了新的文献求助10
5秒前
十一完成签到 ,获得积分10
5秒前
叶子驳回了田様应助
7秒前
星辰大海应助冷傲机器猫采纳,获得10
7秒前
7秒前
隐形曼青应助Arkhamk采纳,获得10
8秒前
8秒前
xinxinwen关注了科研通微信公众号
8秒前
mufcyang发布了新的文献求助10
11秒前
PG完成签到 ,获得积分10
12秒前
emson完成签到,获得积分10
13秒前
knowledge完成签到,获得积分10
14秒前
15秒前
17秒前
17秒前
桐桐应助KID采纳,获得10
17秒前
Ava应助俏皮咖啡采纳,获得10
18秒前
弄井完成签到,获得积分10
19秒前
JamesPei应助www采纳,获得10
19秒前
高高的茹妖完成签到,获得积分10
20秒前
皮卡丘发布了新的文献求助20
21秒前
瘦瘦白卉发布了新的文献求助10
22秒前
星星发布了新的文献求助10
22秒前
斯文败类应助小王采纳,获得30
22秒前
yuan发布了新的文献求助10
24秒前
哈喽发布了新的文献求助10
24秒前
可爱的函函应助nine2652采纳,获得10
25秒前
科研通AI2S应助Zhoujian采纳,获得10
25秒前
HANGOVERG发布了新的文献求助10
26秒前
27秒前
小福发布了新的文献求助10
28秒前
29秒前
AAA完成签到,获得积分10
30秒前
醉月完成签到,获得积分10
30秒前
30秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125274
求助须知:如何正确求助?哪些是违规求助? 2775580
关于积分的说明 7727081
捐赠科研通 2431059
什么是DOI,文献DOI怎么找? 1291657
科研通“疑难数据库(出版商)”最低求助积分说明 622216
版权声明 600368