材料科学
各向异性
极限抗拉强度
疲劳极限
垂直的
复合材料
断裂(地质)
图表
融合
人口
疲劳试验
合金
延伸率
冶金
几何学
光学
统计
物理
数学
人口学
社会学
语言学
哲学
作者
Zhengkai Wu,Shengchuan Wu,Jianguang Bao,Weijian Qian,Suleyman Karabal,Wei Sun,Philip J. Withers
标识
DOI:10.1016/j.ijfatigue.2021.106317
摘要
Metallurgical defects have a critical influence on the anisotropic fatigue resistance of additively manufactured parts under cyclic loading. Here X-ray computed tomography (CT) has been used to characterise the defect population for laser powder bed fusion processed AlSi10Mg alloy and correlated with the tensile and high cycle fatigue (HCF) properties of specimens loaded both parallel and perpendicular to build direction. Despite similar tensile strengths, those tested perpendicular to the build direction exhibit a higher elongation and a higher fatigue strength (114 MPa) than those tested parallel to it (45 MPa). The near surface defects preferentially act as the fatigue crack initiation site for almost all the tested HCF specimens. The large oblate (pancake-shaped) defects were found to orient primarily within the build plane giving a larger projected area within this plane leading to a highly anisotropic fatigue strength. Extreme value statistics were used to predict the likely defect population in the critical near surface region of fatigue samples based on X-ray CT measurements. Finally, a fatigue performance assessment diagram considering these extreme value defects was established using the Kitagawa-Takahashi diagram.
科研通智能强力驱动
Strongly Powered by AbleSci AI