Epitaxial Pb on InAs nanowires for quantum devices.

光电子学 外延 纳米技术 分子束外延 量子点 半导体
作者
Thomas Kanne,Mikelis Marnauza,Dags Olsteins,Damon J. Carrad,Joachim E. Sestoft,Joeri de Bruijckere,Lunjie Zeng,Erik Johnson,Eva Olsson,Kasper Grove-Rasmussen,Jesper Nygård
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:16 (7): 776-781 被引量:9
标识
DOI:10.1038/s41565-021-00900-9
摘要

Semiconductor–superconductor hybrids are widely used to realize complex quantum phenomena, such as topological superconductivity and spins coupled to Cooper pairs. Accessing new, exotic regimes at high magnetic fields and increasing operating temperatures beyond the state-of-the-art requires new, epitaxially matched semiconductor–superconductor materials. One challenge is the generation of favourable conditions for heterostructural formation between materials with the desired properties. Here we harness an increased knowledge of metal-on-semiconductor growth to develop InAs nanowires with epitaxially matched, single-crystal, atomically flat Pb films with no axial grain boundaries. These highly ordered heterostructures have a critical temperature of 7 K and a superconducting gap of 1.25 meV, which remains hard at 8.5 T, and therefore they offer a parameter space more than twice as large as those of alternative semiconductor–superconductor hybrids. Additionally, InAs/Pb island devices exhibit magnetic field-driven transitions from a Cooper pair to single-electron charging, a prerequisite for use in topological quantum computation. Semiconductor–Pb hybrids potentially enable access to entirely new regimes for a number of different quantum systems. Semiconductor–superconductor hybrids are used for realizing complex quantum phenomena but are limited in the accessible magnetic field and temperature range. Now, hybrid devices made from InAs nanowires and epitaxially matched, single-crystal, atomically flat Pb films present superior characteristics, doubling the available parameter space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yoyo完成签到,获得积分10
1秒前
1秒前
LANzzy发布了新的文献求助10
3秒前
mj发布了新的文献求助10
3秒前
深情安青应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
Aaron应助科研通管家采纳,获得10
4秒前
竹筏过海应助科研通管家采纳,获得30
4秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
Yifan2024应助科研通管家采纳,获得100
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
杳鸢应助科研通管家采纳,获得30
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Aaron应助科研通管家采纳,获得10
5秒前
5秒前
竹筏过海应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
惜寒完成签到 ,获得积分10
5秒前
5秒前
Hello应助欣喜秋天采纳,获得10
6秒前
7秒前
zbx发布了新的文献求助10
8秒前
8秒前
小魏小魏发布了新的文献求助10
8秒前
渔舟唱晚应助闵玧其采纳,获得10
9秒前
小南哥完成签到,获得积分10
9秒前
10秒前
小伍完成签到,获得积分10
11秒前
11秒前
Jasper应助天真豪采纳,获得10
11秒前
小六六六关注了科研通微信公众号
12秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 990
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
A Simple Constitutive Description for Cellular Concrete 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3395289
求助须知:如何正确求助?哪些是违规求助? 3005343
关于积分的说明 8817031
捐赠科研通 2692147
什么是DOI,文献DOI怎么找? 1474717
科研通“疑难数据库(出版商)”最低求助积分说明 682065
邀请新用户注册赠送积分活动 675212