作者
Rumeng Wang,Min Ji,Hongyan Zhai,Yujing Guo,Yuan Liu
摘要
There is a growing concern on the fate and the consequent ecological or health risks of antibiotics and antibiotic resistance genes (ARGs) in natural or artificial water environment. The effluent of wastewater treatment plants (WWTPs) has been reported to be an important source of antibiotics and ARGs in the environment. WWTP effluent could be discharged into surface water bodies or recycled, either of which could lead to different exposure risks. The impact of WWTP effluents on the levels of antibiotics and ARGs in effluent-receiving water bodies and the removal efficiency of antibiotics and ARGs in reclaimed wastewater treatment plants (RWTPs) were seldom simultaneously investigated. Thus, in this study, we investigated the occurrence of antibiotics and ARGs in four WWTP effluents, and their downstream effluent-receiving water bodies and RWTPs in seasons of low-water-level. The total concentrations of ofloxacin, norfloxacin, ciprofloxacin, roxithromycin, azithromycin, erythromycin, tetracycline, oxytetracycline, chlortetracycline, and sulfamethoxazole in the secondary effluents were 1441.6–4917.6 ng L−1. Ofloxacin had the highest concentration. The absolute and relative abundances of total ARGs (qnrD, qnrS, ermA, ermB, tetA, tetQ, sul1, and sul2) in the secondary effluents were 103–104 copies mL−1 and 10−4–10−2 ARG/16S rRNA. Sul1 and sul2 were the major species with the highest detection frequencies and levels. In most cases, WWTP effluents were not the major contributors to the levels and species of antibiotics and ARGs in the surface water bodies. Four RWTPs removed 43.5–98.9% of antibiotics and − 0.19–2.91 log of ARGs. Antibiotics and ARGs increased in chlorination, ozonation and filtration units. Antibiotics had significantly positive correlations with ARGs, biological oxygen demands, total phosphorus, total nitrogen, and ammonia nitrogen in the four effluent-receiving water bodies. In RWTPs, the total concentrations of antibiotics showed a significant positive correlation with the total abundance of ARGs.