Pushing nanomaterials up to the kilogram scale – An accelerated approach for synthesizing antimicrobial ZnO with high shear reactors, machine learning and high-throughput analysis

标杆管理 纳米材料 可扩展性 纳米技术 产量(工程) 吞吐量 工艺工程 计算机科学 生化工程 材料科学 工程类 电信 业务 数据库 营销 冶金 无线
作者
Nicholas A. Jose,Mikhail Kovalev,Eric Bradford,Artur M. Schweidtmann,Hua Chun Zeng,Alexei A. Lapkin
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:426: 131345-131345 被引量:17
标识
DOI:10.1016/j.cej.2021.131345
摘要

Novel materials are the backbone of major technological advances. However, the development and wide-scale introduction of new materials, such as nanomaterials, is limited by three main factors—the expense of experiments, inefficiency of synthesis methods and complexity of scale-up. Reaching the kilogram scale is a hurdle that takes years of effort for many nanomaterials. We introduce an improved methodology for materials development, combining state-of-the-art techniques—multi-objective machine learning optimization, high yield microreactors and high throughput analysis. We demonstrate this approach through the optimization of ZnO nanoparticle synthesis, simultaneously targeting high yield and high antibacterial activity. In fewer than 100 experiments, we developed a 1 kg day−1 continuous synthesis for ZnO (with a space-time-yield of 62.4 kg day−1 m−3), having an antibacterial activity comparable to hydrothermally synthesized nano-ZnO and cetrimonium bromide. Following this, we provide insights into the mechanistic factors underlying the performance-yield tradeoffs of synthesis and highlight the need for benchmarking machine learning models with traditional chemical engineering methods. Methods for increasing model accuracy at steep pareto fronts, in this case at yields close to 1 kg per day, should also be improved. To project the next steps for process scale-up and the potential advantages of this methodology, we conduct a scalability analysis in comparison to conventional batch production methods, in which there is a significant reduction in degrees of freedom. The proposed method has the potential to significantly reduce experimental costs, increase process efficiency and enhance material performance, which culminate to form a new pathway for materials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级的鹅完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
我是老大应助liu采纳,获得10
2秒前
今后应助026采纳,获得10
2秒前
李某某发布了新的文献求助10
3秒前
3秒前
Geass完成签到,获得积分10
3秒前
3秒前
要减肥冰菱完成签到 ,获得积分10
3秒前
Dream发布了新的文献求助10
3秒前
FashionBoy应助wangdake采纳,获得10
4秒前
彭于晏应助俭朴的慕凝采纳,获得10
4秒前
第一百零一个完成签到,获得积分10
4秒前
纸包鱼发布了新的文献求助10
5秒前
英俊的铭应助clown采纳,获得10
5秒前
Jiaocm完成签到,获得积分10
6秒前
cyh完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
8秒前
蝈蝈发布了新的文献求助10
10秒前
小白学生信完成签到,获得积分10
11秒前
赘婿应助ss采纳,获得10
11秒前
Orange应助淡定的幼南采纳,获得10
11秒前
subohr完成签到,获得积分10
11秒前
wangdake完成签到,获得积分10
12秒前
WB87应助徐沛采纳,获得10
12秒前
12秒前
小二郎应助zhangwenjie采纳,获得30
14秒前
15秒前
美索不达米亚完成签到,获得积分20
15秒前
16秒前
JOY完成签到 ,获得积分10
16秒前
16秒前
健忘曼彤发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
廿一发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424782
求助须知:如何正确求助?哪些是违规求助? 4539099
关于积分的说明 14165553
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444061
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483