Pushing nanomaterials up to the kilogram scale – An accelerated approach for synthesizing antimicrobial ZnO with high shear reactors, machine learning and high-throughput analysis

标杆管理 纳米材料 可扩展性 纳米技术 产量(工程) 吞吐量 工艺工程 计算机科学 生化工程 材料科学 工程类 电信 业务 数据库 营销 冶金 无线
作者
Nicholas A. Jose,Mikhail Kovalev,Eric Bradford,Artur M. Schweidtmann,Hua Chun Zeng,Alexei A. Lapkin
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:426: 131345-131345 被引量:17
标识
DOI:10.1016/j.cej.2021.131345
摘要

Novel materials are the backbone of major technological advances. However, the development and wide-scale introduction of new materials, such as nanomaterials, is limited by three main factors—the expense of experiments, inefficiency of synthesis methods and complexity of scale-up. Reaching the kilogram scale is a hurdle that takes years of effort for many nanomaterials. We introduce an improved methodology for materials development, combining state-of-the-art techniques—multi-objective machine learning optimization, high yield microreactors and high throughput analysis. We demonstrate this approach through the optimization of ZnO nanoparticle synthesis, simultaneously targeting high yield and high antibacterial activity. In fewer than 100 experiments, we developed a 1 kg day−1 continuous synthesis for ZnO (with a space-time-yield of 62.4 kg day−1 m−3), having an antibacterial activity comparable to hydrothermally synthesized nano-ZnO and cetrimonium bromide. Following this, we provide insights into the mechanistic factors underlying the performance-yield tradeoffs of synthesis and highlight the need for benchmarking machine learning models with traditional chemical engineering methods. Methods for increasing model accuracy at steep pareto fronts, in this case at yields close to 1 kg per day, should also be improved. To project the next steps for process scale-up and the potential advantages of this methodology, we conduct a scalability analysis in comparison to conventional batch production methods, in which there is a significant reduction in degrees of freedom. The proposed method has the potential to significantly reduce experimental costs, increase process efficiency and enhance material performance, which culminate to form a new pathway for materials discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MrRaBB完成签到 ,获得积分10
刚刚
等待黎明完成签到,获得积分10
刚刚
刚刚
1秒前
无尘发布了新的文献求助10
1秒前
咪咪完成签到,获得积分10
2秒前
周志友完成签到,获得积分10
2秒前
无语的从彤完成签到,获得积分10
2秒前
2秒前
靓丽的采白完成签到,获得积分10
2秒前
小小小小鸟完成签到,获得积分10
2秒前
欢呼的巧蕊完成签到,获得积分10
2秒前
无花果应助欣慰的以蕊采纳,获得10
2秒前
尼i完成签到,获得积分10
3秒前
jjwen完成签到 ,获得积分10
3秒前
kaosxy发布了新的文献求助10
3秒前
4秒前
4秒前
搜集达人应助zhaoxu采纳,获得10
4秒前
quasar完成签到,获得积分10
4秒前
4秒前
chilin发布了新的文献求助10
5秒前
帅气的东蒽完成签到,获得积分10
5秒前
LI完成签到,获得积分10
5秒前
6秒前
昔年完成签到 ,获得积分10
6秒前
林韦完成签到,获得积分10
6秒前
6秒前
smkmfy完成签到,获得积分10
6秒前
孙七喜完成签到,获得积分10
7秒前
8秒前
高兴的冬天完成签到,获得积分10
8秒前
8秒前
雨雨完成签到,获得积分10
9秒前
10秒前
LI发布了新的文献求助10
10秒前
飘逸绾绾完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
刘吉瀚发布了新的文献求助10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197