已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pushing nanomaterials up to the kilogram scale – An accelerated approach for synthesizing antimicrobial ZnO with high shear reactors, machine learning and high-throughput analysis

标杆管理 纳米材料 可扩展性 纳米技术 产量(工程) 吞吐量 工艺工程 计算机科学 生化工程 材料科学 工程类 电信 业务 数据库 营销 冶金 无线
作者
Nicholas A. Jose,Mikhail Kovalev,Eric Bradford,Artur M. Schweidtmann,Hua Chun Zeng,Alexei A. Lapkin
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:426: 131345-131345 被引量:17
标识
DOI:10.1016/j.cej.2021.131345
摘要

Novel materials are the backbone of major technological advances. However, the development and wide-scale introduction of new materials, such as nanomaterials, is limited by three main factors—the expense of experiments, inefficiency of synthesis methods and complexity of scale-up. Reaching the kilogram scale is a hurdle that takes years of effort for many nanomaterials. We introduce an improved methodology for materials development, combining state-of-the-art techniques—multi-objective machine learning optimization, high yield microreactors and high throughput analysis. We demonstrate this approach through the optimization of ZnO nanoparticle synthesis, simultaneously targeting high yield and high antibacterial activity. In fewer than 100 experiments, we developed a 1 kg day−1 continuous synthesis for ZnO (with a space-time-yield of 62.4 kg day−1 m−3), having an antibacterial activity comparable to hydrothermally synthesized nano-ZnO and cetrimonium bromide. Following this, we provide insights into the mechanistic factors underlying the performance-yield tradeoffs of synthesis and highlight the need for benchmarking machine learning models with traditional chemical engineering methods. Methods for increasing model accuracy at steep pareto fronts, in this case at yields close to 1 kg per day, should also be improved. To project the next steps for process scale-up and the potential advantages of this methodology, we conduct a scalability analysis in comparison to conventional batch production methods, in which there is a significant reduction in degrees of freedom. The proposed method has the potential to significantly reduce experimental costs, increase process efficiency and enhance material performance, which culminate to form a new pathway for materials discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Beton_X发布了新的文献求助30
1秒前
彭于晏应助EadonChen采纳,获得10
2秒前
smart完成签到,获得积分10
3秒前
打打应助h2o采纳,获得10
4秒前
科研通AI6.1应助虚心飞鸟采纳,获得10
4秒前
李健的小迷弟应助向阳采纳,获得10
5秒前
褚幻香发布了新的文献求助10
8秒前
范范完成签到,获得积分20
9秒前
12秒前
Yusra完成签到 ,获得积分10
13秒前
不懈奋进应助LO7pM2采纳,获得30
14秒前
15秒前
蛋挞完成签到 ,获得积分10
15秒前
向阳完成签到,获得积分10
15秒前
455完成签到,获得积分10
16秒前
向阳发布了新的文献求助10
19秒前
Akim应助柚子采纳,获得10
20秒前
大模型应助PAPA采纳,获得10
21秒前
22秒前
Hello应助科研通管家采纳,获得10
23秒前
Hilda007应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
YifanWang应助科研通管家采纳,获得10
23秒前
Hilda007应助科研通管家采纳,获得10
23秒前
CCCheny应助科研通管家采纳,获得10
23秒前
YifanWang应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
24秒前
CCCheny应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
24秒前
隐形曼青应助科研通管家采纳,获得100
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
隐形曼青应助科研通管家采纳,获得100
24秒前
Hello应助科研通管家采纳,获得10
24秒前
无极微光应助科研通管家采纳,获得20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938