Pushing nanomaterials up to the kilogram scale – An accelerated approach for synthesizing antimicrobial ZnO with high shear reactors, machine learning and high-throughput analysis

标杆管理 纳米材料 可扩展性 纳米技术 产量(工程) 吞吐量 工艺工程 计算机科学 生化工程 材料科学 工程类 电信 业务 数据库 营销 冶金 无线
作者
Nicholas A. Jose,Mikhail Kovalev,Eric Bradford,Artur M. Schweidtmann,Hua Chun Zeng,Alexei A. Lapkin
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:426: 131345-131345 被引量:17
标识
DOI:10.1016/j.cej.2021.131345
摘要

Novel materials are the backbone of major technological advances. However, the development and wide-scale introduction of new materials, such as nanomaterials, is limited by three main factors—the expense of experiments, inefficiency of synthesis methods and complexity of scale-up. Reaching the kilogram scale is a hurdle that takes years of effort for many nanomaterials. We introduce an improved methodology for materials development, combining state-of-the-art techniques—multi-objective machine learning optimization, high yield microreactors and high throughput analysis. We demonstrate this approach through the optimization of ZnO nanoparticle synthesis, simultaneously targeting high yield and high antibacterial activity. In fewer than 100 experiments, we developed a 1 kg day−1 continuous synthesis for ZnO (with a space-time-yield of 62.4 kg day−1 m−3), having an antibacterial activity comparable to hydrothermally synthesized nano-ZnO and cetrimonium bromide. Following this, we provide insights into the mechanistic factors underlying the performance-yield tradeoffs of synthesis and highlight the need for benchmarking machine learning models with traditional chemical engineering methods. Methods for increasing model accuracy at steep pareto fronts, in this case at yields close to 1 kg per day, should also be improved. To project the next steps for process scale-up and the potential advantages of this methodology, we conduct a scalability analysis in comparison to conventional batch production methods, in which there is a significant reduction in degrees of freedom. The proposed method has the potential to significantly reduce experimental costs, increase process efficiency and enhance material performance, which culminate to form a new pathway for materials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菲菲公主完成签到,获得积分10
刚刚
江海客完成签到,获得积分10
刚刚
标致小珍发布了新的文献求助10
1秒前
2秒前
Wang发布了新的文献求助10
2秒前
2秒前
qingfengnai完成签到,获得积分10
4秒前
旺旺大礼包完成签到,获得积分10
4秒前
5秒前
山山而川发布了新的文献求助20
5秒前
5秒前
liu发布了新的文献求助10
5秒前
小马甲应助赵先森采纳,获得10
6秒前
277发布了新的文献求助10
6秒前
科研通AI2S应助sugar采纳,获得10
6秒前
jack发布了新的文献求助10
7秒前
完美世界应助标致小珍采纳,获得10
7秒前
7秒前
闪闪寒荷完成签到 ,获得积分10
8秒前
愉快尔烟发布了新的文献求助10
8秒前
青柠发布了新的文献求助20
8秒前
积极热狗发布了新的文献求助10
9秒前
一人一般完成签到,获得积分10
9秒前
Moss完成签到,获得积分10
9秒前
单薄觅云发布了新的文献求助10
9秒前
白水完成签到,获得积分10
9秒前
脑洞疼应助Cecilia采纳,获得10
10秒前
mingyue应助slowly采纳,获得30
11秒前
linkr5完成签到,获得积分10
11秒前
12秒前
光锥发布了新的文献求助10
12秒前
123完成签到,获得积分10
14秒前
田様应助wdn采纳,获得10
14秒前
14秒前
领导范儿应助chen采纳,获得30
15秒前
vivian完成签到 ,获得积分10
16秒前
在云里爱与歌完成签到,获得积分10
16秒前
标致小珍完成签到,获得积分20
17秒前
liggbang完成签到,获得积分10
18秒前
18秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221340
求助须知:如何正确求助?哪些是违规求助? 2870099
关于积分的说明 8168990
捐赠科研通 2536895
什么是DOI,文献DOI怎么找? 1369109
科研通“疑难数据库(出版商)”最低求助积分说明 645367
邀请新用户注册赠送积分活动 619036