Pushing nanomaterials up to the kilogram scale – An accelerated approach for synthesizing antimicrobial ZnO with high shear reactors, machine learning and high-throughput analysis

标杆管理 纳米材料 可扩展性 纳米技术 产量(工程) 吞吐量 工艺工程 计算机科学 生化工程 材料科学 工程类 电信 业务 数据库 营销 冶金 无线
作者
Nicholas A. Jose,Mikhail Kovalev,Eric Bradford,Artur M. Schweidtmann,Hua Chun Zeng,Alexei A. Lapkin
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:426: 131345-131345 被引量:17
标识
DOI:10.1016/j.cej.2021.131345
摘要

Novel materials are the backbone of major technological advances. However, the development and wide-scale introduction of new materials, such as nanomaterials, is limited by three main factors—the expense of experiments, inefficiency of synthesis methods and complexity of scale-up. Reaching the kilogram scale is a hurdle that takes years of effort for many nanomaterials. We introduce an improved methodology for materials development, combining state-of-the-art techniques—multi-objective machine learning optimization, high yield microreactors and high throughput analysis. We demonstrate this approach through the optimization of ZnO nanoparticle synthesis, simultaneously targeting high yield and high antibacterial activity. In fewer than 100 experiments, we developed a 1 kg day−1 continuous synthesis for ZnO (with a space-time-yield of 62.4 kg day−1 m−3), having an antibacterial activity comparable to hydrothermally synthesized nano-ZnO and cetrimonium bromide. Following this, we provide insights into the mechanistic factors underlying the performance-yield tradeoffs of synthesis and highlight the need for benchmarking machine learning models with traditional chemical engineering methods. Methods for increasing model accuracy at steep pareto fronts, in this case at yields close to 1 kg per day, should also be improved. To project the next steps for process scale-up and the potential advantages of this methodology, we conduct a scalability analysis in comparison to conventional batch production methods, in which there is a significant reduction in degrees of freedom. The proposed method has the potential to significantly reduce experimental costs, increase process efficiency and enhance material performance, which culminate to form a new pathway for materials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lys发布了新的文献求助10
1秒前
尚帅完成签到,获得积分10
2秒前
2秒前
2秒前
芒果草莓发布了新的文献求助10
4秒前
5秒前
今后应助找不到文献采纳,获得10
5秒前
斯文败类应助羊羊羊采纳,获得10
6秒前
6秒前
浮游应助Camellia采纳,获得10
7秒前
xiaoxiao发布了新的文献求助10
7秒前
英俊的铭应助lys采纳,获得10
8秒前
ljt0109发布了新的文献求助10
8秒前
8秒前
9秒前
852应助三倍体杂交土豆人采纳,获得10
11秒前
充电宝应助山点采纳,获得10
11秒前
啵啵阳子发布了新的文献求助10
11秒前
neko发布了新的文献求助10
12秒前
成就傲芙完成签到,获得积分10
12秒前
乐乐发布了新的文献求助10
13秒前
13秒前
zho完成签到,获得积分10
14秒前
14秒前
14秒前
玛奇朵完成签到,获得积分20
15秒前
HHHhjl发布了新的文献求助10
15秒前
天天快乐应助spring采纳,获得10
15秒前
公玉衡完成签到,获得积分10
17秒前
从容沛珊发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
哈哈哈完成签到,获得积分10
18秒前
有魅力书雪完成签到,获得积分10
18秒前
jin发布了新的文献求助10
18秒前
20秒前
超级采白发布了新的文献求助50
20秒前
夏蓉完成签到,获得积分10
22秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123961
求助须知:如何正确求助?哪些是违规求助? 4328299
关于积分的说明 13487058
捐赠科研通 4162704
什么是DOI,文献DOI怎么找? 2281736
邀请新用户注册赠送积分活动 1283059
关于科研通互助平台的介绍 1222170