Pushing nanomaterials up to the kilogram scale – An accelerated approach for synthesizing antimicrobial ZnO with high shear reactors, machine learning and high-throughput analysis

标杆管理 纳米材料 可扩展性 纳米技术 产量(工程) 吞吐量 工艺工程 计算机科学 生化工程 材料科学 工程类 电信 业务 数据库 营销 冶金 无线
作者
Nicholas A. Jose,Mikhail Kovalev,Eric Bradford,Artur M. Schweidtmann,Hua Chun Zeng,Alexei A. Lapkin
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:426: 131345-131345 被引量:17
标识
DOI:10.1016/j.cej.2021.131345
摘要

Novel materials are the backbone of major technological advances. However, the development and wide-scale introduction of new materials, such as nanomaterials, is limited by three main factors—the expense of experiments, inefficiency of synthesis methods and complexity of scale-up. Reaching the kilogram scale is a hurdle that takes years of effort for many nanomaterials. We introduce an improved methodology for materials development, combining state-of-the-art techniques—multi-objective machine learning optimization, high yield microreactors and high throughput analysis. We demonstrate this approach through the optimization of ZnO nanoparticle synthesis, simultaneously targeting high yield and high antibacterial activity. In fewer than 100 experiments, we developed a 1 kg day−1 continuous synthesis for ZnO (with a space-time-yield of 62.4 kg day−1 m−3), having an antibacterial activity comparable to hydrothermally synthesized nano-ZnO and cetrimonium bromide. Following this, we provide insights into the mechanistic factors underlying the performance-yield tradeoffs of synthesis and highlight the need for benchmarking machine learning models with traditional chemical engineering methods. Methods for increasing model accuracy at steep pareto fronts, in this case at yields close to 1 kg per day, should also be improved. To project the next steps for process scale-up and the potential advantages of this methodology, we conduct a scalability analysis in comparison to conventional batch production methods, in which there is a significant reduction in degrees of freedom. The proposed method has the potential to significantly reduce experimental costs, increase process efficiency and enhance material performance, which culminate to form a new pathway for materials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
梅卡完成签到 ,获得积分10
3秒前
111发布了新的文献求助10
3秒前
酷波er应助飞快的夜天采纳,获得10
5秒前
5秒前
5秒前
范月月完成签到 ,获得积分10
6秒前
sirhai发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助少敏敏采纳,获得10
7秒前
英姑应助罗拉采纳,获得10
9秒前
小爪冰凉发布了新的文献求助10
9秒前
9秒前
9秒前
苏孖发布了新的文献求助20
9秒前
Qi完成签到 ,获得积分10
10秒前
百事可乐完成签到 ,获得积分10
12秒前
李嘉欣发布了新的文献求助10
12秒前
小万完成签到,获得积分10
13秒前
Lucas应助开灯人和关灯人采纳,获得10
13秒前
怕孤独的冰淇淋完成签到,获得积分10
14秒前
禹与于发布了新的文献求助10
15秒前
persist发布了新的文献求助10
15秒前
向上发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
111完成签到,获得积分10
16秒前
17秒前
Heartlark完成签到,获得积分10
19秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173