已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimation of Failure Probability Function under Imprecise Probabilities by Active Learning–Augmented Probabilistic Integration

概率逻辑 计算机科学 重要性抽样 点式的 不确定度量化 功能(生物学) 水准点(测量) 算法 数学优化 数学 人工智能 机器学习 蒙特卡罗方法 统计 进化生物学 地理 数学分析 生物 大地测量学
作者
Chao Dang,Pengfei Wei,Jingwen Song,Michael Beer
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:7 (4) 被引量:49
标识
DOI:10.1061/ajrua6.0001179
摘要

Imprecise probabilities have gained increasing popularity for quantitatively modeling uncertainty under incomplete information in various fields. However, it is still a computationally challenging task to propagate imprecise probabilities because a double-loop procedure is usually involved. In this contribution, a fully decoupled method, termed as active learning–augmented probabilistic integration (ALAPI), is developed to efficiently estimate the failure probability function (FPF) in the presence of imprecise probabilities. Specially, the parameterized probability-box models are of specific concern. By interpreting the failure probability integral from a Bayesian probabilistic integration perspective, the discretization error can be regarded as a kind of epistemic uncertainty, allowing it to be properly quantified and propagated through computational pipelines. Accordingly, an active learning probabilistic integration (ALPI) method is developed for failure probability estimation, in which a new learning function and a new stopping criterion associated with the upper bound of the posterior variance and coefficient of variation are proposed. Based on the idea of constructing an augmented uncertainty space, an imprecise augmented stochastic simulation (IASS) method is devised by using the random sampling high-dimensional representation model (RS-HDMR) for estimating the FPF in a pointwise stochastic simulation manner. To further improve the efficiency of IASS, the ALAPI is formed by an elegant combination of the ALPI and IASS, allowing the RS-HDMR component functions of the FPF to be properly inferred. Three benchmark examples are investigated to demonstrate the accuracy and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿梅梅梅发布了新的文献求助10
刚刚
shareef发布了新的文献求助10
刚刚
utopia完成签到,获得积分10
1秒前
2秒前
2秒前
虚幻笑晴发布了新的文献求助10
3秒前
追寻夜香发布了新的文献求助30
3秒前
猫也不知道完成签到,获得积分10
4秒前
Rw发布了新的文献求助10
7秒前
9秒前
阿梅梅梅完成签到,获得积分10
11秒前
完美世界应助Rw采纳,获得10
12秒前
情怀应助shareef采纳,获得10
12秒前
li完成签到 ,获得积分10
12秒前
大个应助59采纳,获得10
15秒前
木木驳回了华仔应助
16秒前
wyx完成签到,获得积分10
17秒前
19秒前
TTTHANKS完成签到 ,获得积分10
19秒前
独特的夜阑完成签到 ,获得积分10
20秒前
猫猫祟完成签到 ,获得积分10
22秒前
zhang完成签到 ,获得积分10
23秒前
29秒前
脑细胞发布了新的文献求助10
36秒前
杨博皓发布了新的文献求助10
40秒前
41秒前
44秒前
瘦瘦安蕾完成签到 ,获得积分10
45秒前
科研通AI6应助收皮皮采纳,获得10
47秒前
大方芷文关注了科研通微信公众号
47秒前
49秒前
Honor发布了新的文献求助10
49秒前
张元东完成签到 ,获得积分10
50秒前
52秒前
浮游应助科研通管家采纳,获得10
52秒前
星辰大海应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
完美世界应助科研通管家采纳,获得10
52秒前
SciGPT应助科研通管家采纳,获得10
52秒前
bkagyin应助科研通管家采纳,获得10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511