亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation of Failure Probability Function under Imprecise Probabilities by Active Learning–Augmented Probabilistic Integration

概率逻辑 计算机科学 重要性抽样 点式的 不确定度量化 功能(生物学) 水准点(测量) 算法 数学优化 数学 人工智能 机器学习 蒙特卡罗方法 统计 进化生物学 地理 数学分析 生物 大地测量学
作者
Chao Dang,Pengfei Wei,Jingwen Song,Michael Beer
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:7 (4) 被引量:42
标识
DOI:10.1061/ajrua6.0001179
摘要

Imprecise probabilities have gained increasing popularity for quantitatively modeling uncertainty under incomplete information in various fields. However, it is still a computationally challenging task to propagate imprecise probabilities because a double-loop procedure is usually involved. In this contribution, a fully decoupled method, termed as active learning–augmented probabilistic integration (ALAPI), is developed to efficiently estimate the failure probability function (FPF) in the presence of imprecise probabilities. Specially, the parameterized probability-box models are of specific concern. By interpreting the failure probability integral from a Bayesian probabilistic integration perspective, the discretization error can be regarded as a kind of epistemic uncertainty, allowing it to be properly quantified and propagated through computational pipelines. Accordingly, an active learning probabilistic integration (ALPI) method is developed for failure probability estimation, in which a new learning function and a new stopping criterion associated with the upper bound of the posterior variance and coefficient of variation are proposed. Based on the idea of constructing an augmented uncertainty space, an imprecise augmented stochastic simulation (IASS) method is devised by using the random sampling high-dimensional representation model (RS-HDMR) for estimating the FPF in a pointwise stochastic simulation manner. To further improve the efficiency of IASS, the ALAPI is formed by an elegant combination of the ALPI and IASS, allowing the RS-HDMR component functions of the FPF to be properly inferred. Three benchmark examples are investigated to demonstrate the accuracy and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
12秒前
张小美发布了新的文献求助10
15秒前
半城微凉应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
tishe7完成签到,获得积分10
17秒前
feifei发布了新的文献求助10
20秒前
所所应助张小美采纳,获得10
23秒前
乐乐应助qls123采纳,获得10
42秒前
qls123完成签到,获得积分10
49秒前
50秒前
54秒前
59秒前
岸在海的深处完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
qls123发布了新的文献求助10
1分钟前
1分钟前
千山暮雪发布了新的文献求助10
1分钟前
xx完成签到 ,获得积分10
1分钟前
捉迷藏完成签到,获得积分0
1分钟前
guoze完成签到,获得积分10
1分钟前
NexusExplorer应助千山暮雪采纳,获得30
1分钟前
wsw驳回了orixero应助
1分钟前
1分钟前
Djnsbj发布了新的文献求助10
1分钟前
dopamine完成签到,获得积分10
1分钟前
半城微凉应助科研通管家采纳,获得10
2分钟前
半城微凉应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
孜然味的拜拜肉完成签到,获得积分10
2分钟前
2分钟前
wsw发布了新的文献求助10
2分钟前
yi完成签到 ,获得积分10
2分钟前
3分钟前
张小美发布了新的文献求助10
3分钟前
张小美完成签到,获得积分10
3分钟前
xixi关注了科研通微信公众号
3分钟前
清爽的机器猫完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155601
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214