Estimation of Failure Probability Function under Imprecise Probabilities by Active Learning–Augmented Probabilistic Integration

概率逻辑 计算机科学 重要性抽样 点式的 不确定度量化 功能(生物学) 水准点(测量) 算法 数学优化 数学 人工智能 机器学习 蒙特卡罗方法 统计 进化生物学 地理 数学分析 生物 大地测量学
作者
Chao Dang,Pengfei Wei,Jingwen Song,Michael Beer
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:7 (4) 被引量:49
标识
DOI:10.1061/ajrua6.0001179
摘要

Imprecise probabilities have gained increasing popularity for quantitatively modeling uncertainty under incomplete information in various fields. However, it is still a computationally challenging task to propagate imprecise probabilities because a double-loop procedure is usually involved. In this contribution, a fully decoupled method, termed as active learning–augmented probabilistic integration (ALAPI), is developed to efficiently estimate the failure probability function (FPF) in the presence of imprecise probabilities. Specially, the parameterized probability-box models are of specific concern. By interpreting the failure probability integral from a Bayesian probabilistic integration perspective, the discretization error can be regarded as a kind of epistemic uncertainty, allowing it to be properly quantified and propagated through computational pipelines. Accordingly, an active learning probabilistic integration (ALPI) method is developed for failure probability estimation, in which a new learning function and a new stopping criterion associated with the upper bound of the posterior variance and coefficient of variation are proposed. Based on the idea of constructing an augmented uncertainty space, an imprecise augmented stochastic simulation (IASS) method is devised by using the random sampling high-dimensional representation model (RS-HDMR) for estimating the FPF in a pointwise stochastic simulation manner. To further improve the efficiency of IASS, the ALAPI is formed by an elegant combination of the ALPI and IASS, allowing the RS-HDMR component functions of the FPF to be properly inferred. Three benchmark examples are investigated to demonstrate the accuracy and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果煎饼发布了新的文献求助10
刚刚
ai77qi发布了新的文献求助10
刚刚
1秒前
研友_VZG7GZ应助zh采纳,获得10
1秒前
1秒前
2秒前
金磊完成签到,获得积分10
2秒前
hailiangzheng发布了新的文献求助10
2秒前
传奇3应助调皮帆布鞋采纳,获得10
3秒前
percy完成签到 ,获得积分10
3秒前
3秒前
林小雨发布了新的文献求助10
4秒前
Bellona完成签到,获得积分10
4秒前
清嘉完成签到,获得积分10
4秒前
ZZY完成签到,获得积分10
5秒前
5秒前
魁梧的钧发布了新的文献求助20
5秒前
Fishchips发布了新的文献求助10
5秒前
5秒前
SciGPT应助tS717采纳,获得10
6秒前
自觉的涵易完成签到 ,获得积分10
6秒前
Hello应助自由南珍采纳,获得10
7秒前
苹果煎饼完成签到,获得积分10
8秒前
8秒前
杨小冬发布了新的文献求助10
8秒前
倒霉蛋完成签到,获得积分10
9秒前
庄严发布了新的文献求助10
9秒前
2401发布了新的文献求助10
9秒前
9秒前
9秒前
zhaoqing完成签到,获得积分10
10秒前
10秒前
充电宝应助han采纳,获得10
11秒前
12秒前
ajiduo发布了新的文献求助10
13秒前
聿潇发布了新的文献求助10
14秒前
14秒前
华枝春满发布了新的文献求助10
14秒前
Islet1810发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294