已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimation of Failure Probability Function under Imprecise Probabilities by Active Learning–Augmented Probabilistic Integration

概率逻辑 计算机科学 重要性抽样 点式的 不确定度量化 功能(生物学) 水准点(测量) 算法 数学优化 数学 人工智能 机器学习 蒙特卡罗方法 统计 进化生物学 地理 数学分析 生物 大地测量学
作者
Chao Dang,Pengfei Wei,Jingwen Song,Michael Beer
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:7 (4) 被引量:49
标识
DOI:10.1061/ajrua6.0001179
摘要

Imprecise probabilities have gained increasing popularity for quantitatively modeling uncertainty under incomplete information in various fields. However, it is still a computationally challenging task to propagate imprecise probabilities because a double-loop procedure is usually involved. In this contribution, a fully decoupled method, termed as active learning–augmented probabilistic integration (ALAPI), is developed to efficiently estimate the failure probability function (FPF) in the presence of imprecise probabilities. Specially, the parameterized probability-box models are of specific concern. By interpreting the failure probability integral from a Bayesian probabilistic integration perspective, the discretization error can be regarded as a kind of epistemic uncertainty, allowing it to be properly quantified and propagated through computational pipelines. Accordingly, an active learning probabilistic integration (ALPI) method is developed for failure probability estimation, in which a new learning function and a new stopping criterion associated with the upper bound of the posterior variance and coefficient of variation are proposed. Based on the idea of constructing an augmented uncertainty space, an imprecise augmented stochastic simulation (IASS) method is devised by using the random sampling high-dimensional representation model (RS-HDMR) for estimating the FPF in a pointwise stochastic simulation manner. To further improve the efficiency of IASS, the ALAPI is formed by an elegant combination of the ALPI and IASS, allowing the RS-HDMR component functions of the FPF to be properly inferred. Three benchmark examples are investigated to demonstrate the accuracy and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助AnasYusuf采纳,获得10
刚刚
1秒前
2秒前
Hello应助ll采纳,获得10
2秒前
asdfasdfj完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
淼淼完成签到 ,获得积分10
5秒前
一颗橙子发布了新的文献求助10
6秒前
asdfasdfj发布了新的文献求助10
7秒前
豆腐宣誓发布了新的文献求助10
8秒前
谷雨秋发布了新的文献求助10
9秒前
10秒前
10秒前
Daisy发布了新的文献求助10
10秒前
11秒前
田様应助run采纳,获得10
11秒前
愉快的凡白完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
午凌二发布了新的文献求助10
15秒前
zhouzhiyi完成签到,获得积分20
16秒前
16秒前
zhu发布了新的文献求助10
17秒前
jia发布了新的文献求助10
18秒前
0107发布了新的文献求助10
19秒前
zwx发布了新的文献求助10
19秒前
兴奋的书包完成签到,获得积分10
22秒前
李雪蒙完成签到,获得积分10
23秒前
23秒前
貘和完成签到 ,获得积分10
23秒前
li发布了新的文献求助50
23秒前
赘婿应助涨涨涨采纳,获得10
24秒前
绿豆发布了新的文献求助10
24秒前
情怀应助keke采纳,获得10
25秒前
26秒前
26秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443502
求助须知:如何正确求助?哪些是违规求助? 4553396
关于积分的说明 14241800
捐赠科研通 4475069
什么是DOI,文献DOI怎么找? 2452248
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794