Estimation of Failure Probability Function under Imprecise Probabilities by Active Learning–Augmented Probabilistic Integration

概率逻辑 计算机科学 重要性抽样 点式的 不确定度量化 功能(生物学) 水准点(测量) 算法 数学优化 数学 人工智能 机器学习 蒙特卡罗方法 统计 进化生物学 地理 数学分析 生物 大地测量学
作者
Chao Dang,Pengfei Wei,Jingwen Song,Michael Beer
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:7 (4) 被引量:49
标识
DOI:10.1061/ajrua6.0001179
摘要

Imprecise probabilities have gained increasing popularity for quantitatively modeling uncertainty under incomplete information in various fields. However, it is still a computationally challenging task to propagate imprecise probabilities because a double-loop procedure is usually involved. In this contribution, a fully decoupled method, termed as active learning–augmented probabilistic integration (ALAPI), is developed to efficiently estimate the failure probability function (FPF) in the presence of imprecise probabilities. Specially, the parameterized probability-box models are of specific concern. By interpreting the failure probability integral from a Bayesian probabilistic integration perspective, the discretization error can be regarded as a kind of epistemic uncertainty, allowing it to be properly quantified and propagated through computational pipelines. Accordingly, an active learning probabilistic integration (ALPI) method is developed for failure probability estimation, in which a new learning function and a new stopping criterion associated with the upper bound of the posterior variance and coefficient of variation are proposed. Based on the idea of constructing an augmented uncertainty space, an imprecise augmented stochastic simulation (IASS) method is devised by using the random sampling high-dimensional representation model (RS-HDMR) for estimating the FPF in a pointwise stochastic simulation manner. To further improve the efficiency of IASS, the ALAPI is formed by an elegant combination of the ALPI and IASS, allowing the RS-HDMR component functions of the FPF to be properly inferred. Three benchmark examples are investigated to demonstrate the accuracy and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee发布了新的文献求助10
刚刚
田様应助骆驼牛子采纳,获得10
1秒前
彭静琳发布了新的文献求助10
1秒前
听雨发布了新的文献求助10
3秒前
七七七发布了新的文献求助10
4秒前
充电宝应助苏苏采纳,获得30
4秒前
5秒前
zll发布了新的文献求助30
5秒前
6秒前
001完成签到,获得积分10
7秒前
7秒前
乳酸菌发布了新的文献求助10
9秒前
10秒前
10秒前
英俊的铭应助caoxiaosheng采纳,获得10
10秒前
11秒前
泥泥吃涂涂完成签到 ,获得积分10
11秒前
crystal发布了新的文献求助10
11秒前
er发布了新的文献求助10
12秒前
orixero应助彭静琳采纳,获得10
12秒前
Jerry发布了新的文献求助10
12秒前
dmxywzw6发布了新的文献求助10
13秒前
13秒前
dxx发布了新的文献求助10
14秒前
Zxc发布了新的文献求助10
16秒前
诚心的彩虹完成签到,获得积分10
17秒前
苏苏发布了新的文献求助30
17秒前
娇娇发布了新的文献求助10
18秒前
传奇3应助苗苗采纳,获得10
18秒前
Jello发布了新的文献求助10
18秒前
吃的饭广泛完成签到 ,获得积分10
22秒前
李爱国应助孤独的冰彤采纳,获得10
23秒前
Fiona000001发布了新的文献求助100
24秒前
24秒前
阿宇完成签到,获得积分10
24秒前
25秒前
别急完成签到 ,获得积分10
25秒前
dxx完成签到,获得积分10
25秒前
25秒前
猪皮菠萝包完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181857
求助须知:如何正确求助?哪些是违规求助? 4368699
关于积分的说明 13603950
捐赠科研通 4220044
什么是DOI,文献DOI怎么找? 2314418
邀请新用户注册赠送积分活动 1313133
关于科研通互助平台的介绍 1261834