Context. Asymptotic giant branch (AGB) stars are known to lose a significant amount of mass by a stellar wind, which controls the remainder of their stellar lifetime. High angular-resolution observations show that the winds of these cool stars typically exhibit mid- to small-scale density perturbations such as spirals and arcs, believed to be caused by the gravitational interaction with a (sub-)stellar companion.Aims. We aim to explore the effects of the wind-companion interaction on the 3D density and velocity distribution of the wind, as a function of three key parameters: wind velocity, binary separation and companion mass. For the first time, we compare the impact on the outflow of a planetary companion to that of a stellar companion. We intend to devise a morphology classification scheme based on a singular parameter.Methods. We ran a small grid of high-resolution polytropic models with the smoothed particle hydrodynamics (SPH) numerical code PHANTOM to examine the 3D density structure of the AGB outflow in the orbital and meridional plane and around the poles. By constructing a basic toy model of the gravitational acceleration due to the companion, we analysed the terminal velocity reached by the outflow in the simulations.Results. We find that models with a stellar companion, large binary separation and high wind speed obtain a wind morphology in the orbital plane consisting of a single spiral structure, of which the two edges diverge due to a velocity dispersion caused by the gravitational slingshot mechanism. In the meridional plane the spiral manifests itself as concentric arcs, reaching all latitudes. When lowering the wind velocity and/or the binary separation, the morphology becomes more complex: in the orbital plane a double spiral arises, which is irregular for the closest systems, and the wind material gets focussed towards the orbital plane, with the formation of an equatorial density enhancement (EDE) as a consequence. Lowering the companion mass from a stellar to a planetary mass, reduces the formation of density perturbations significantly.Conclusions. With this grid of models we cover the prominent morphology changes in a companion-perturbed AGB outflow: slow winds with a close, massive binary companion show a more complex morphology. Additionally, we prove that massive planets are able to significantly impact the density structure of an AGB wind. We find that the interaction with a companion affects the terminal velocity of the wind, which can be explained by the gravitational slingshot mechanism. We distinguish between two types of wind focussing to the orbital plane resulting from distinct mechanisms: global flattening of the outflow as a result of the AGB star’s orbital motion and the formation of an EDE as a consequence of the companion’s gravitational pull. We investigate different morphology classification schemes and uncover that the ratio of the gravitational potential energy density of the companion to the kinetic energy density of the AGB outflow yields a robust classification parameter for the models presented in this paper.