已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying Flow Patterns in Water Pipelines Using Complex Network Theory

管道运输 管网分析 复杂网络 聚类分析 管道(软件) 流量(数学) 计算机科学 网络分析 数据挖掘 流量网络 拓扑(电路) 环境科学 工程类 数学 人工智能 机械 数学优化 几何学 物理 电气工程 万维网 环境工程 程序设计语言
作者
Shengwei Pei,Haixing Liu,Yan Zhu,Chao Zhang,Mengke Zhao,Guangtao Fu,Kun Yang,Yixing Yuan,Chi Zhang
出处
期刊:Journal of Hydraulic Engineering [American Society of Civil Engineers]
卷期号:147 (6) 被引量:4
标识
DOI:10.1061/(asce)hy.1943-7900.0001882
摘要

Air pockets trapped in water pipelines are a common phenomenon and can lead to different air-water two-phase flow patterns: stratified, blowback, plug, and bubbly flows. The two former flows contain a large amount of air and should be carefully monitored for pipeline safety, while the two latter flows have relatively low air fractions and can be regarded as normal operating states of pipelines. Hence, flow pattern identification is key to diagnosing the operating state of pipelines. In this paper, a new data analysis method based on complex network theory is proposed to identify the features of flow patterns using pressure signals. The pressure signals of different flow patterns, collected from an experimental facility, were used to characterize the nodes and edges (i.e., connections) in the complex network. The closely linked nodes with dense edges could be aggregated to form a cluster (i.e., community). An unsupervised machine learning technique is then used for community clustering in the network. The results show that the complex network constructed from pressure signals can be divided into several communities, representing different phases (i.e., air, water, or mixed phases) of the air-water flows. Therefore, the flow patterns can be identified in terms of the cluster features and topological features, which are represented by indicators including modularity, graph density, average path length, and transitivity. The impacts of two structural parameters of the complex network, i.e., window size and sliding step, are analyzed. Sliding step is shown to have a more significant impact on the flow pattern identification than window size. This study shows that the complex network approach is effective for flow pattern identification in air-water two-phase flows and could be potentially used for identification of pipeline operational states.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
依桉完成签到 ,获得积分10
1秒前
mumu完成签到,获得积分10
1秒前
斗罗大陆完成签到,获得积分10
2秒前
2秒前
温馨家园完成签到 ,获得积分10
3秒前
阿朱完成签到 ,获得积分10
3秒前
Ye发布了新的文献求助10
4秒前
4秒前
伏尾窗的猫完成签到,获得积分20
4秒前
Milesma发布了新的文献求助10
5秒前
6秒前
凶狠的嚣关注了科研通微信公众号
6秒前
燕儿完成签到 ,获得积分20
7秒前
今天晚上早点睡完成签到 ,获得积分10
8秒前
雪中完成签到 ,获得积分10
10秒前
ceicic发布了新的文献求助10
10秒前
晴子发布了新的文献求助10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
Tanya47应助科研通管家采纳,获得10
11秒前
Tanya47应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
底层特律应助科研通管家采纳,获得10
11秒前
Tanya47应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
烟花应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
11秒前
Tanya47应助科研通管家采纳,获得10
11秒前
dusk完成签到 ,获得积分10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
12秒前
抗氧剂完成签到,获得积分10
12秒前
13秒前
JamesPei应助七宝大当家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759