亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying Flow Patterns in Water Pipelines Using Complex Network Theory

管道运输 管网分析 复杂网络 聚类分析 管道(软件) 流量(数学) 计算机科学 网络分析 数据挖掘 流量网络 拓扑(电路) 环境科学 工程类 数学 人工智能 机械 数学优化 几何学 物理 环境工程 电气工程 万维网 程序设计语言
作者
Shengwei Pei,Haixing Liu,Yan Zhu,Chao Zhang,Mengke Zhao,Guangtao Fu,Kun Yang,Yixing Yuan,Chi Zhang
出处
期刊:Journal of Hydraulic Engineering [American Society of Civil Engineers]
卷期号:147 (6) 被引量:4
标识
DOI:10.1061/(asce)hy.1943-7900.0001882
摘要

Air pockets trapped in water pipelines are a common phenomenon and can lead to different air-water two-phase flow patterns: stratified, blowback, plug, and bubbly flows. The two former flows contain a large amount of air and should be carefully monitored for pipeline safety, while the two latter flows have relatively low air fractions and can be regarded as normal operating states of pipelines. Hence, flow pattern identification is key to diagnosing the operating state of pipelines. In this paper, a new data analysis method based on complex network theory is proposed to identify the features of flow patterns using pressure signals. The pressure signals of different flow patterns, collected from an experimental facility, were used to characterize the nodes and edges (i.e., connections) in the complex network. The closely linked nodes with dense edges could be aggregated to form a cluster (i.e., community). An unsupervised machine learning technique is then used for community clustering in the network. The results show that the complex network constructed from pressure signals can be divided into several communities, representing different phases (i.e., air, water, or mixed phases) of the air-water flows. Therefore, the flow patterns can be identified in terms of the cluster features and topological features, which are represented by indicators including modularity, graph density, average path length, and transitivity. The impacts of two structural parameters of the complex network, i.e., window size and sliding step, are analyzed. Sliding step is shown to have a more significant impact on the flow pattern identification than window size. This study shows that the complex network approach is effective for flow pattern identification in air-water two-phase flows and could be potentially used for identification of pipeline operational states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
cortex发布了新的文献求助20
8秒前
听风发布了新的文献求助10
12秒前
西西無糖完成签到,获得积分10
15秒前
听风完成签到,获得积分10
28秒前
陈泽豪完成签到 ,获得积分10
33秒前
李爱国应助kzf丶bryant采纳,获得10
38秒前
39秒前
44秒前
小胖发布了新的文献求助10
44秒前
kzf丶bryant发布了新的文献求助10
50秒前
Yuan072完成签到,获得积分10
55秒前
善学以致用应助kzf丶bryant采纳,获得10
57秒前
rnf完成签到,获得积分10
1分钟前
rnf完成签到,获得积分10
1分钟前
rose完成签到,获得积分10
1分钟前
1分钟前
NexusExplorer应助cortex采纳,获得20
1分钟前
ding应助肥肥酱采纳,获得10
1分钟前
1分钟前
1分钟前
小胖关注了科研通微信公众号
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
田様应助如意数据线采纳,获得10
1分钟前
1分钟前
叶子完成签到 ,获得积分10
1分钟前
1分钟前
肥肥酱发布了新的文献求助10
1分钟前
专注篮球发布了新的文献求助10
1分钟前
1分钟前
Yesaniar发布了新的文献求助30
2分钟前
肥肥酱完成签到,获得积分10
2分钟前
128536完成签到,获得积分10
2分钟前
2分钟前
2分钟前
士艳发布了新的文献求助10
2分钟前
程同学完成签到,获得积分20
2分钟前
ZH完成签到 ,获得积分10
2分钟前
wisteety完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526536
求助须知:如何正确求助?哪些是违规求助? 3106959
关于积分的说明 9281972
捐赠科研通 2804482
什么是DOI,文献DOI怎么找? 1539468
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709579