Identifying Flow Patterns in Water Pipelines Using Complex Network Theory

管道运输 管网分析 复杂网络 聚类分析 管道(软件) 流量(数学) 计算机科学 网络分析 数据挖掘 流量网络 拓扑(电路) 环境科学 工程类 数学 人工智能 机械 数学优化 几何学 物理 电气工程 万维网 环境工程 程序设计语言
作者
Shengwei Pei,Haixing Liu,Yan Zhu,Chao Zhang,Mengke Zhao,Guangtao Fu,Kun Yang,Yixing Yuan,Chi Zhang
出处
期刊:Journal of Hydraulic Engineering [American Society of Civil Engineers]
卷期号:147 (6) 被引量:4
标识
DOI:10.1061/(asce)hy.1943-7900.0001882
摘要

Air pockets trapped in water pipelines are a common phenomenon and can lead to different air-water two-phase flow patterns: stratified, blowback, plug, and bubbly flows. The two former flows contain a large amount of air and should be carefully monitored for pipeline safety, while the two latter flows have relatively low air fractions and can be regarded as normal operating states of pipelines. Hence, flow pattern identification is key to diagnosing the operating state of pipelines. In this paper, a new data analysis method based on complex network theory is proposed to identify the features of flow patterns using pressure signals. The pressure signals of different flow patterns, collected from an experimental facility, were used to characterize the nodes and edges (i.e., connections) in the complex network. The closely linked nodes with dense edges could be aggregated to form a cluster (i.e., community). An unsupervised machine learning technique is then used for community clustering in the network. The results show that the complex network constructed from pressure signals can be divided into several communities, representing different phases (i.e., air, water, or mixed phases) of the air-water flows. Therefore, the flow patterns can be identified in terms of the cluster features and topological features, which are represented by indicators including modularity, graph density, average path length, and transitivity. The impacts of two structural parameters of the complex network, i.e., window size and sliding step, are analyzed. Sliding step is shown to have a more significant impact on the flow pattern identification than window size. This study shows that the complex network approach is effective for flow pattern identification in air-water two-phase flows and could be potentially used for identification of pipeline operational states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
缓慢乐天完成签到,获得积分10
3秒前
Jarvis完成签到,获得积分10
4秒前
4秒前
武穆杰发布了新的文献求助10
5秒前
6秒前
6秒前
Akim应助Nyxia采纳,获得10
7秒前
7秒前
茗佞发布了新的文献求助10
9秒前
568923发布了新的文献求助10
9秒前
zsm完成签到,获得积分10
9秒前
想人陪的一刀完成签到,获得积分20
10秒前
充电宝应助美味的薯片采纳,获得10
10秒前
11秒前
任性背包发布了新的文献求助10
12秒前
12秒前
quan发布了新的文献求助10
12秒前
12秒前
眼镜胖子发布了新的文献求助10
13秒前
所所应助苏格拉底的嘲笑采纳,获得10
14秒前
Owen应助一方通行采纳,获得10
14秒前
Liufgui应助mzbgnk采纳,获得10
14秒前
14秒前
sanwen完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
17秒前
充电宝应助眼镜胖子采纳,获得10
21秒前
情怀应助破心采纳,获得10
21秒前
LEI发布了新的文献求助10
21秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
研友_ngkyGn应助科研通管家采纳,获得10
22秒前
yar应助科研通管家采纳,获得10
22秒前
Bio应助科研通管家采纳,获得30
23秒前
大个应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070