亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying Flow Patterns in Water Pipelines Using Complex Network Theory

管道运输 管网分析 复杂网络 聚类分析 管道(软件) 流量(数学) 计算机科学 网络分析 数据挖掘 流量网络 拓扑(电路) 环境科学 工程类 数学 人工智能 机械 数学优化 几何学 物理 电气工程 万维网 环境工程 程序设计语言
作者
Shengwei Pei,Haixing Liu,Yan Zhu,Chao Zhang,Mengke Zhao,Guangtao Fu,Kun Yang,Yixing Yuan,Chi Zhang
出处
期刊:Journal of Hydraulic Engineering [American Society of Civil Engineers]
卷期号:147 (6) 被引量:4
标识
DOI:10.1061/(asce)hy.1943-7900.0001882
摘要

Air pockets trapped in water pipelines are a common phenomenon and can lead to different air-water two-phase flow patterns: stratified, blowback, plug, and bubbly flows. The two former flows contain a large amount of air and should be carefully monitored for pipeline safety, while the two latter flows have relatively low air fractions and can be regarded as normal operating states of pipelines. Hence, flow pattern identification is key to diagnosing the operating state of pipelines. In this paper, a new data analysis method based on complex network theory is proposed to identify the features of flow patterns using pressure signals. The pressure signals of different flow patterns, collected from an experimental facility, were used to characterize the nodes and edges (i.e., connections) in the complex network. The closely linked nodes with dense edges could be aggregated to form a cluster (i.e., community). An unsupervised machine learning technique is then used for community clustering in the network. The results show that the complex network constructed from pressure signals can be divided into several communities, representing different phases (i.e., air, water, or mixed phases) of the air-water flows. Therefore, the flow patterns can be identified in terms of the cluster features and topological features, which are represented by indicators including modularity, graph density, average path length, and transitivity. The impacts of two structural parameters of the complex network, i.e., window size and sliding step, are analyzed. Sliding step is shown to have a more significant impact on the flow pattern identification than window size. This study shows that the complex network approach is effective for flow pattern identification in air-water two-phase flows and could be potentially used for identification of pipeline operational states.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴朗发布了新的文献求助10
2秒前
沉静摇伽发布了新的文献求助10
12秒前
banbieshenlu完成签到,获得积分10
14秒前
16秒前
ding应助taysun采纳,获得10
17秒前
17秒前
Shihan完成签到,获得积分10
19秒前
牛肉面完成签到,获得积分10
22秒前
小马甲应助大力的图图采纳,获得10
22秒前
生椰拿铁发布了新的文献求助10
23秒前
在水一方应助Shihan采纳,获得10
24秒前
whick发布了新的文献求助10
25秒前
31秒前
忽远忽近的她完成签到 ,获得积分10
33秒前
33秒前
量子星尘发布了新的文献求助10
33秒前
喵了个咪发布了新的文献求助10
36秒前
晴朗完成签到 ,获得积分10
36秒前
米龙完成签到,获得积分10
39秒前
ssch197完成签到 ,获得积分10
39秒前
彭于晏应助凡凡采纳,获得30
42秒前
喵了个咪完成签到 ,获得积分10
46秒前
50秒前
Chris完成签到 ,获得积分10
53秒前
54秒前
凡凡发布了新的文献求助30
55秒前
57秒前
科研通AI2S应助李联洪采纳,获得10
1分钟前
科研通AI2S应助Shihan采纳,获得10
1分钟前
onelastkiss给onelastkiss的求助进行了留言
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
江流儿完成签到,获得积分10
1分钟前
1分钟前
雪白冥茗完成签到 ,获得积分10
1分钟前
卷毛维安发布了新的文献求助10
1分钟前
JIE完成签到 ,获得积分10
1分钟前
bbhk完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112