A New Steel Defect Detection Algorithm Based on Deep Learning

计算机科学 算法 人工智能 深度学习 卷积(计算机科学) 模式识别(心理学) 曲面(拓扑) 人工神经网络 数学 几何学
作者
Weidong Zhao,Feng Chen,Hancheng Huang,Dan Li,Wei Cheng
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2021: 1-13 被引量:114
标识
DOI:10.1155/2021/5592878
摘要

In recent years, more and more scholars devoted themselves to the research of the target detection algorithm due to the continuous development of deep learning. Among them, the detection and recognition of small and complex targets are still a problem to be solved. The authors of this article have understood the shortcomings of the deep learning detection algorithm in detecting small and complex defect targets and would like to share a new improved target detection algorithm in steel surface defect detection. The steel surface defects will affect the quality of steel seriously. We find that most of the current detection algorithms for NEU-DET dataset detection accuracy are low, so we choose to verify a steel surface defect detection algorithm based on machine vision on this dataset for the problem of defect detection in steel production. A series of improvement measures are carried out in the traditional Faster R-CNN algorithm, such as reconstructing the network structure of Faster R-CNN. Based on the small features of the target, we train the network with multiscale fusion. For the complex features of the target, we replace part of the conventional convolution network with a deformable convolution network. The experimental results show that the deep learning network model trained by the proposed method has good detection performance, and the mean average precision is 0.752, which is 0.128 higher than the original algorithm. Among them, the average precision of crazing, inclusion, patches, pitted surface, rolled in scale and scratches is 0.501, 0.791, 0.792, 0.874, 0.649, and 0.905, respectively. The detection method is able to identify small target defects on the steel surface effectively, which can provide a reference for the automatic detection of steel defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤听露完成签到,获得积分10
刚刚
科目三应助青柠大大采纳,获得10
1秒前
MQQ完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
BLUICE发布了新的文献求助30
2秒前
iNk应助好学的猪采纳,获得10
2秒前
mark707完成签到,获得积分20
2秒前
如意雅山发布了新的文献求助10
2秒前
msk完成签到 ,获得积分10
3秒前
3秒前
3秒前
爆米花应助健忘的无色采纳,获得10
3秒前
萝卜卷心菜完成签到 ,获得积分10
3秒前
木木应助畅快的书兰采纳,获得10
4秒前
4秒前
SID完成签到,获得积分10
4秒前
Voloid完成签到,获得积分10
5秒前
5秒前
大肉猪完成签到,获得积分10
5秒前
充电宝应助you采纳,获得10
5秒前
6秒前
培a完成签到,获得积分10
6秒前
朴素绿真完成签到,获得积分10
6秒前
写得出发的中完成签到,获得积分10
6秒前
过氧化氢应助咖可乐采纳,获得10
7秒前
7秒前
邺水朱华完成签到,获得积分10
7秒前
7秒前
ZSJ完成签到,获得积分10
8秒前
曾经念真应助完美的凡灵采纳,获得10
8秒前
领导范儿应助幽默的书本采纳,获得30
9秒前
9秒前
10秒前
包凡之完成签到,获得积分10
10秒前
honeybee完成签到,获得积分10
10秒前
张雅雅发布了新的文献求助10
10秒前
似画发布了新的文献求助10
10秒前
邺水朱华发布了新的文献求助30
10秒前
leozhang完成签到,获得积分10
10秒前
自然1111发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582