已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A New Steel Defect Detection Algorithm Based on Deep Learning

计算机科学 算法 人工智能 深度学习 卷积(计算机科学) 模式识别(心理学) 曲面(拓扑) 人工神经网络 数学 几何学
作者
Weidong Zhao,Feng Chen,Hancheng Huang,Dan Li,Wei Cheng
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2021: 1-13 被引量:114
标识
DOI:10.1155/2021/5592878
摘要

In recent years, more and more scholars devoted themselves to the research of the target detection algorithm due to the continuous development of deep learning. Among them, the detection and recognition of small and complex targets are still a problem to be solved. The authors of this article have understood the shortcomings of the deep learning detection algorithm in detecting small and complex defect targets and would like to share a new improved target detection algorithm in steel surface defect detection. The steel surface defects will affect the quality of steel seriously. We find that most of the current detection algorithms for NEU-DET dataset detection accuracy are low, so we choose to verify a steel surface defect detection algorithm based on machine vision on this dataset for the problem of defect detection in steel production. A series of improvement measures are carried out in the traditional Faster R-CNN algorithm, such as reconstructing the network structure of Faster R-CNN. Based on the small features of the target, we train the network with multiscale fusion. For the complex features of the target, we replace part of the conventional convolution network with a deformable convolution network. The experimental results show that the deep learning network model trained by the proposed method has good detection performance, and the mean average precision is 0.752, which is 0.128 higher than the original algorithm. Among them, the average precision of crazing, inclusion, patches, pitted surface, rolled in scale and scratches is 0.501, 0.791, 0.792, 0.874, 0.649, and 0.905, respectively. The detection method is able to identify small target defects on the steel surface effectively, which can provide a reference for the automatic detection of steel defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷涵蕾发布了新的文献求助10
刚刚
迢迢笙箫完成签到,获得积分10
1秒前
holmes发布了新的文献求助20
1秒前
乐乐应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
祖宁完成签到,获得积分10
7秒前
Nos_Edan发布了新的文献求助50
9秒前
慕子默完成签到,获得积分10
9秒前
自然的含蕾完成签到 ,获得积分10
12秒前
hank完成签到,获得积分10
16秒前
小蘑菇应助ssk采纳,获得10
17秒前
holmes完成签到,获得积分10
19秒前
鬼见愁应助林一采纳,获得10
20秒前
义气高丽完成签到 ,获得积分10
20秒前
20秒前
21秒前
吃不饱星球球长完成签到,获得积分0
22秒前
1111完成签到 ,获得积分10
25秒前
25秒前
小小莫完成签到 ,获得积分10
25秒前
百浪多息完成签到,获得积分10
25秒前
一一一多完成签到 ,获得积分10
26秒前
百浪多息发布了新的文献求助10
28秒前
江望雪完成签到 ,获得积分10
31秒前
灵巧的绮菱完成签到 ,获得积分10
31秒前
W123完成签到,获得积分10
33秒前
kaka完成签到,获得积分0
33秒前
诺诺完成签到 ,获得积分10
34秒前
洁净的盼烟完成签到 ,获得积分10
36秒前
ChouNic完成签到 ,获得积分10
41秒前
快乐的如风完成签到,获得积分10
43秒前
别当真完成签到 ,获得积分10
43秒前
光能使者完成签到,获得积分10
47秒前
qwerty2234完成签到 ,获得积分10
47秒前
绾妤完成签到 ,获得积分10
50秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136953
求助须知:如何正确求助?哪些是违规求助? 2787893
关于积分的说明 7783824
捐赠科研通 2443962
什么是DOI,文献DOI怎么找? 1299536
科研通“疑难数据库(出版商)”最低求助积分说明 625464
版权声明 600954