A Bayesian optimization approach for rapidly mapping residual network function in stroke

神经影像学 认知 计算机科学 神经功能成像 失语症 机器学习 人工智能 物理医学与康复 医学 心理学 认知心理学 神经科学
作者
Romy Lorenz,Michelle Johal,Frederic Dick,Adam Hampshire,Robert Leech,Fatemeh Geranmayeh
出处
期刊:Brain [Oxford University Press]
卷期号:144 (7): 2120-2134 被引量:18
标识
DOI:10.1093/brain/awab109
摘要

Post-stroke cognitive and linguistic impairments are debilitating conditions, with limited therapeutic options. Domain-general brain networks play an important role in stroke recovery and characterizing their residual function with functional MRI has the potential to yield biomarkers capable of guiding patient-specific rehabilitation. However, this is challenging as such detailed characterization requires testing patients on multitudes of cognitive tasks in the scanner, rendering experimental sessions unfeasibly lengthy. Thus, the current status quo in clinical neuroimaging research involves testing patients on a very limited number of tasks, in the hope that it will reveal a useful neuroimaging biomarker for the whole cohort. Given the great heterogeneity among stroke patients and the volume of possible tasks this approach is unsustainable. Advancing task-based functional MRI biomarker discovery requires a paradigm shift in order to be able to swiftly characterize residual network activity in individual patients using a diverse range of cognitive tasks. Here, we overcome this problem by leveraging neuroadaptive Bayesian optimization, an approach combining real-time functional MRI with machine-learning, by intelligently searching across many tasks, this approach rapidly maps out patient-specific profiles of residual domain-general network function. We used this technique in a cross-sectional study with 11 left-hemispheric stroke patients with chronic aphasia (four female, age ± standard deviation: 59 ± 10.9 years) and 14 healthy, age-matched control subjects (eight female, age ± standard deviation: 55.6 ± 6.8 years). To assess intra-subject reliability of the functional profiles obtained, we conducted two independent runs per subject, for which the algorithm was entirely reinitialized. Our results demonstrate that this technique is both feasible and robust, yielding reliable patient-specific functional profiles. Moreover, we show that group-level results are not representative of patient-specific results. Whereas controls have highly similar profiles, patients show idiosyncratic profiles of network abnormalities that are associated with behavioural performance. In summary, our study highlights the importance of moving beyond traditional 'one-size-fits-all' approaches where patients are treated as one group and single tasks are used. Our approach can be extended to diverse brain networks and combined with brain stimulation or other therapeutics, thereby opening new avenues for precision medicine targeting a diverse range of neurological and psychiatric conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助从容的灵凡采纳,获得10
1秒前
迷路的虔发布了新的文献求助10
2秒前
等清晨发布了新的文献求助10
2秒前
2秒前
2秒前
大模型应助沫沫采纳,获得10
3秒前
3秒前
3秒前
笨脑腐发布了新的文献求助10
3秒前
长孙曼香发布了新的文献求助10
4秒前
文献王完成签到,获得积分10
4秒前
慕青应助龙归大海采纳,获得10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
KanmenRider发布了新的文献求助10
6秒前
搜集达人应助小猫钓鱼采纳,获得10
6秒前
kobeliu发布了新的文献求助10
7秒前
7秒前
cc应助Yu采纳,获得20
7秒前
晴天发布了新的文献求助10
9秒前
kk发布了新的文献求助10
9秒前
不知发布了新的文献求助10
10秒前
聿木发布了新的文献求助10
10秒前
anglervlf发布了新的文献求助10
10秒前
Buneng完成签到,获得积分10
11秒前
11秒前
虞头星星完成签到 ,获得积分10
12秒前
cc发布了新的文献求助10
13秒前
文艺百褶裙完成签到,获得积分10
14秒前
领导范儿应助夹心采纳,获得10
14秒前
14秒前
852应助陆人甲采纳,获得10
15秒前
16秒前
彳亍发布了新的文献求助30
17秒前
17秒前
17秒前
17秒前
完美的jia发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713248
求助须知:如何正确求助?哪些是违规求助? 5214511
关于积分的说明 15270206
捐赠科研通 4865029
什么是DOI,文献DOI怎么找? 2611814
邀请新用户注册赠送积分活动 1562053
关于科研通互助平台的介绍 1519295