A Bayesian optimization approach for rapidly mapping residual network function in stroke

神经影像学 认知 计算机科学 神经功能成像 失语症 机器学习 人工智能 物理医学与康复 医学 心理学 认知心理学 神经科学
作者
Romy Lorenz,Michelle Johal,Frederic Dick,Adam Hampshire,Robert Leech,Fatemeh Geranmayeh
出处
期刊:Brain [Oxford University Press]
卷期号:144 (7): 2120-2134 被引量:18
标识
DOI:10.1093/brain/awab109
摘要

Post-stroke cognitive and linguistic impairments are debilitating conditions, with limited therapeutic options. Domain-general brain networks play an important role in stroke recovery and characterizing their residual function with functional MRI has the potential to yield biomarkers capable of guiding patient-specific rehabilitation. However, this is challenging as such detailed characterization requires testing patients on multitudes of cognitive tasks in the scanner, rendering experimental sessions unfeasibly lengthy. Thus, the current status quo in clinical neuroimaging research involves testing patients on a very limited number of tasks, in the hope that it will reveal a useful neuroimaging biomarker for the whole cohort. Given the great heterogeneity among stroke patients and the volume of possible tasks this approach is unsustainable. Advancing task-based functional MRI biomarker discovery requires a paradigm shift in order to be able to swiftly characterize residual network activity in individual patients using a diverse range of cognitive tasks. Here, we overcome this problem by leveraging neuroadaptive Bayesian optimization, an approach combining real-time functional MRI with machine-learning, by intelligently searching across many tasks, this approach rapidly maps out patient-specific profiles of residual domain-general network function. We used this technique in a cross-sectional study with 11 left-hemispheric stroke patients with chronic aphasia (four female, age ± standard deviation: 59 ± 10.9 years) and 14 healthy, age-matched control subjects (eight female, age ± standard deviation: 55.6 ± 6.8 years). To assess intra-subject reliability of the functional profiles obtained, we conducted two independent runs per subject, for which the algorithm was entirely reinitialized. Our results demonstrate that this technique is both feasible and robust, yielding reliable patient-specific functional profiles. Moreover, we show that group-level results are not representative of patient-specific results. Whereas controls have highly similar profiles, patients show idiosyncratic profiles of network abnormalities that are associated with behavioural performance. In summary, our study highlights the importance of moving beyond traditional 'one-size-fits-all' approaches where patients are treated as one group and single tasks are used. Our approach can be extended to diverse brain networks and combined with brain stimulation or other therapeutics, thereby opening new avenues for precision medicine targeting a diverse range of neurological and psychiatric conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔晓龙发布了新的文献求助10
刚刚
cfer完成签到,获得积分10
刚刚
华仔应助687采纳,获得10
刚刚
hamzhang0426完成签到,获得积分10
刚刚
动听初珍发布了新的文献求助10
刚刚
Summer完成签到,获得积分10
刚刚
1秒前
1秒前
Petrichor完成签到,获得积分10
1秒前
1秒前
qqy完成签到,获得积分10
2秒前
wanci应助zyj采纳,获得100
2秒前
2秒前
咎冷亦完成签到,获得积分10
2秒前
3秒前
xcz完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
摆烂研究牲完成签到,获得积分10
4秒前
4秒前
研友_nVNBVn发布了新的文献求助10
5秒前
新年完成签到,获得积分20
5秒前
FireNow完成签到,获得积分10
5秒前
哈罗完成签到,获得积分10
6秒前
6秒前
五虎完成签到,获得积分10
7秒前
勤恳化蛹发布了新的文献求助10
7秒前
程小柒发布了新的文献求助30
7秒前
猫猫侠完成签到 ,获得积分10
7秒前
朱洛尘发布了新的文献求助10
7秒前
Dr.zhong发布了新的文献求助10
7秒前
wabfye发布了新的文献求助10
7秒前
7秒前
8秒前
Criminology34应助YPF采纳,获得10
8秒前
qu203462发布了新的文献求助30
9秒前
10秒前
十月完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651984
求助须知:如何正确求助?哪些是违规求助? 4786417
关于积分的说明 15057609
捐赠科研通 4810610
什么是DOI,文献DOI怎么找? 2573282
邀请新用户注册赠送积分活动 1529204
关于科研通互助平台的介绍 1488110