亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Bayesian optimization approach for rapidly mapping residual network function in stroke

神经影像学 认知 计算机科学 神经功能成像 失语症 机器学习 人工智能 物理医学与康复 医学 心理学 认知心理学 神经科学
作者
Romy Lorenz,Michelle Johal,Frederic Dick,Adam Hampshire,Robert Leech,Fatemeh Geranmayeh
出处
期刊:Brain [Oxford University Press]
卷期号:144 (7): 2120-2134 被引量:18
标识
DOI:10.1093/brain/awab109
摘要

Post-stroke cognitive and linguistic impairments are debilitating conditions, with limited therapeutic options. Domain-general brain networks play an important role in stroke recovery and characterizing their residual function with functional MRI has the potential to yield biomarkers capable of guiding patient-specific rehabilitation. However, this is challenging as such detailed characterization requires testing patients on multitudes of cognitive tasks in the scanner, rendering experimental sessions unfeasibly lengthy. Thus, the current status quo in clinical neuroimaging research involves testing patients on a very limited number of tasks, in the hope that it will reveal a useful neuroimaging biomarker for the whole cohort. Given the great heterogeneity among stroke patients and the volume of possible tasks this approach is unsustainable. Advancing task-based functional MRI biomarker discovery requires a paradigm shift in order to be able to swiftly characterize residual network activity in individual patients using a diverse range of cognitive tasks. Here, we overcome this problem by leveraging neuroadaptive Bayesian optimization, an approach combining real-time functional MRI with machine-learning, by intelligently searching across many tasks, this approach rapidly maps out patient-specific profiles of residual domain-general network function. We used this technique in a cross-sectional study with 11 left-hemispheric stroke patients with chronic aphasia (four female, age ± standard deviation: 59 ± 10.9 years) and 14 healthy, age-matched control subjects (eight female, age ± standard deviation: 55.6 ± 6.8 years). To assess intra-subject reliability of the functional profiles obtained, we conducted two independent runs per subject, for which the algorithm was entirely reinitialized. Our results demonstrate that this technique is both feasible and robust, yielding reliable patient-specific functional profiles. Moreover, we show that group-level results are not representative of patient-specific results. Whereas controls have highly similar profiles, patients show idiosyncratic profiles of network abnormalities that are associated with behavioural performance. In summary, our study highlights the importance of moving beyond traditional 'one-size-fits-all' approaches where patients are treated as one group and single tasks are used. Our approach can be extended to diverse brain networks and combined with brain stimulation or other therapeutics, thereby opening new avenues for precision medicine targeting a diverse range of neurological and psychiatric conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉吉发布了新的文献求助10
1秒前
沉静摇伽完成签到,获得积分20
1秒前
whick完成签到,获得积分20
2秒前
shinn发布了新的文献求助10
3秒前
Jasper应助吉吉采纳,获得10
5秒前
10秒前
晴朗发布了新的文献求助10
17秒前
沉静摇伽发布了新的文献求助10
27秒前
banbieshenlu完成签到,获得积分10
29秒前
31秒前
ding应助taysun采纳,获得10
32秒前
32秒前
Shihan完成签到,获得积分10
34秒前
牛肉面完成签到,获得积分10
37秒前
小马甲应助大力的图图采纳,获得10
37秒前
生椰拿铁发布了新的文献求助10
38秒前
在水一方应助Shihan采纳,获得10
39秒前
whick发布了新的文献求助10
40秒前
46秒前
忽远忽近的她完成签到 ,获得积分10
48秒前
48秒前
量子星尘发布了新的文献求助10
48秒前
喵了个咪发布了新的文献求助10
51秒前
晴朗完成签到 ,获得积分10
51秒前
米龙完成签到,获得积分10
54秒前
ssch197完成签到 ,获得积分10
54秒前
彭于晏应助凡凡采纳,获得30
57秒前
喵了个咪完成签到 ,获得积分10
1分钟前
1分钟前
Chris完成签到 ,获得积分10
1分钟前
1分钟前
凡凡发布了新的文献求助30
1分钟前
1分钟前
科研通AI2S应助李联洪采纳,获得10
1分钟前
科研通AI2S应助Shihan采纳,获得10
1分钟前
onelastkiss给onelastkiss的求助进行了留言
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112