A Bayesian optimization approach for rapidly mapping residual network function in stroke

神经影像学 认知 计算机科学 神经功能成像 失语症 机器学习 人工智能 物理医学与康复 医学 心理学 认知心理学 神经科学
作者
Romy Lorenz,Michelle Johal,Frederic Dick,Adam Hampshire,Robert Leech,Fatemeh Geranmayeh
出处
期刊:Brain [Oxford University Press]
卷期号:144 (7): 2120-2134 被引量:18
标识
DOI:10.1093/brain/awab109
摘要

Post-stroke cognitive and linguistic impairments are debilitating conditions, with limited therapeutic options. Domain-general brain networks play an important role in stroke recovery and characterizing their residual function with functional MRI has the potential to yield biomarkers capable of guiding patient-specific rehabilitation. However, this is challenging as such detailed characterization requires testing patients on multitudes of cognitive tasks in the scanner, rendering experimental sessions unfeasibly lengthy. Thus, the current status quo in clinical neuroimaging research involves testing patients on a very limited number of tasks, in the hope that it will reveal a useful neuroimaging biomarker for the whole cohort. Given the great heterogeneity among stroke patients and the volume of possible tasks this approach is unsustainable. Advancing task-based functional MRI biomarker discovery requires a paradigm shift in order to be able to swiftly characterize residual network activity in individual patients using a diverse range of cognitive tasks. Here, we overcome this problem by leveraging neuroadaptive Bayesian optimization, an approach combining real-time functional MRI with machine-learning, by intelligently searching across many tasks, this approach rapidly maps out patient-specific profiles of residual domain-general network function. We used this technique in a cross-sectional study with 11 left-hemispheric stroke patients with chronic aphasia (four female, age ± standard deviation: 59 ± 10.9 years) and 14 healthy, age-matched control subjects (eight female, age ± standard deviation: 55.6 ± 6.8 years). To assess intra-subject reliability of the functional profiles obtained, we conducted two independent runs per subject, for which the algorithm was entirely reinitialized. Our results demonstrate that this technique is both feasible and robust, yielding reliable patient-specific functional profiles. Moreover, we show that group-level results are not representative of patient-specific results. Whereas controls have highly similar profiles, patients show idiosyncratic profiles of network abnormalities that are associated with behavioural performance. In summary, our study highlights the importance of moving beyond traditional 'one-size-fits-all' approaches where patients are treated as one group and single tasks are used. Our approach can be extended to diverse brain networks and combined with brain stimulation or other therapeutics, thereby opening new avenues for precision medicine targeting a diverse range of neurological and psychiatric conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sky完成签到,获得积分10
刚刚
奋斗的傲易完成签到,获得积分10
1秒前
瘦瘦寄风完成签到,获得积分10
2秒前
2秒前
mumu完成签到,获得积分10
2秒前
南宫清涟完成签到,获得积分10
3秒前
饕餮肉丝发布了新的文献求助10
3秒前
廖紊完成签到,获得积分10
3秒前
mj发布了新的文献求助10
3秒前
baomingqiu完成签到 ,获得积分10
4秒前
爬得飞快的仲文博完成签到,获得积分10
4秒前
1111完成签到,获得积分10
4秒前
4秒前
栗子发布了新的文献求助20
4秒前
魔术师完成签到,获得积分10
5秒前
程序猿完成签到,获得积分10
5秒前
还不错完成签到,获得积分10
6秒前
冬枣枣发布了新的文献求助10
7秒前
NexusExplorer应助大喵采纳,获得10
7秒前
雨天完成签到,获得积分10
8秒前
哔哔完成签到,获得积分10
8秒前
耍酷的白梦完成签到,获得积分10
8秒前
LT完成签到 ,获得积分10
8秒前
搜集达人应助0℃采纳,获得10
8秒前
嗯嗯你说完成签到,获得积分10
8秒前
轻松叫兽完成签到,获得积分10
9秒前
9秒前
沙河口大长硬完成签到,获得积分10
10秒前
心灵美砖头完成签到,获得积分10
10秒前
天天快乐应助陌路采纳,获得10
10秒前
11秒前
修好世界完成签到,获得积分10
11秒前
pcb完成签到,获得积分10
11秒前
11秒前
mayi完成签到,获得积分10
11秒前
Present完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
秀丽的依云完成签到 ,获得积分10
12秒前
MiYou完成签到,获得积分10
13秒前
无奈的尔白完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613905
求助须知:如何正确求助?哪些是违规求助? 4018314
关于积分的说明 12438103
捐赠科研通 3701040
什么是DOI,文献DOI怎么找? 2041059
邀请新用户注册赠送积分活动 1073751
科研通“疑难数据库(出版商)”最低求助积分说明 957425