Development and Utilization of Piezoelectric Scaffold Systems for the Modulation of the Physico-Chemical Microenvironment of the Cells to Enhance Their Regenerative Behaviors

压电 纳米纤维 材料科学 纳米技术 静电纺丝 压电系数 纳米结构 纳米材料 纳米发生器 聚合物 复合材料
作者
Gerardo Ico
摘要

Author(s): Ico, Gerardo | Advisor(s): Nam, Jin | Abstract: Piezoelectric polymer, poly(vinylidene-trifluoroethylene) (P(VDF-TrFE)), exhibits excellent characteristics, such as flexibility and biocompatibility, for various biological applications that utilize energy conversion between mechanical strain and electric potentials. However, its typically low piezoelectric properties have limited its use as an effective piezoelectric platform. To address this, electrospinning was utilized as a method to manipulate the nanostructure of P(VDF-TrFE) nanofibers to engineer a high-performing piezoelectric material. More specifically, we show that the piezoelectric performance of P(VDF-TrFE) is size dependent; by dimensional reduction to the nanoscale (30 nm), a transformative enhancement in piezoelectric performance was achieved by the synergistic effects of flexoelectricity materialization and enhanced dipole domain alignment. The electrospun P(VDF-TrFE) at this size scale exhibits an exceptional piezoelectric coefficient, d33, at -108 pm V-1, approaching the same magnitude of more traditional inorganic materials, while maintaining its flexibility.We exploit these high performing P(VDF-TrFE) nanofibers for specific biological applications. In one aspect, the large surface area-to-volume ratio inherent to nanomaterials, together with the transformative piezoelectric properties, allowed us to use the material as an ultrasensitive, acoustic-responsive, drug delivery platform driven by the direct piezoelectric effect. The intrinsic negative zeta potential was utilized to electrostatically load cationic drug molecules. We show that the drug release sensitivity of the P(VDF-TrFE) nanofibers depends on the fiber diameter, thus piezoelectric properties. We further showed that the drug release quantity can be tuned by applied acoustic pressure or number of acoustic doses for specific tissue applications. Additionally, through the direct piezoelectric effect, we also demonstrated the utility of P(VDF-TrFE) nanofibers with an aligned morphology in neural tissue engineering. We demonstrate that the piezoelectric P(VDF-TrFE) nanofibers provide a means to culture neural stem cells while electrically stimulating the cells by acoustic actuation of the scaffold, generating electric potentials that were utilized to modulate the cellular behaviors. The electrical stimulation of neural stem cells resulted in neural stem cell differentiation towards different phenotypes, including neurons, oligodendrocytes, and astrocytes, demonstrating the potential utility of the piezoelectric scaffolds for engineering neural tissues composed of multiple cell phenotypes.Finally, a proof-of-concept cell culture platform that can modulate the mechanical properties of cell culture scaffolds on demand, was devised based on the indirect piezoelectric effect. Microfabricated interdigitated electrodes were designed, via computational simulations, to act as an electric field-generating substrate for the P(VDF-TrFE) scaffold. We showed that the stiffness of the P(VDF-TrFE) nanofibers electrospun onto such interdigitated electrodes can be precisely controlled by modulating the applied electric fields across the electrodes. The results demonstrate the significant potential of electrospun piezoelectric nanofibers for a cell culture substrate with an on-demand change of the physical cellular microenvironment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄凌蝶发布了新的文献求助50
刚刚
刚刚
羊羊爱吃羊羊完成签到 ,获得积分10
1秒前
1秒前
Akim应助BOSSJING采纳,获得10
1秒前
纸上彩虹发布了新的文献求助10
2秒前
volzzz完成签到,获得积分10
2秒前
2秒前
大胆砖头完成签到 ,获得积分10
2秒前
小蘑菇应助强健的月饼采纳,获得10
3秒前
3秒前
神揽星辰入梦完成签到,获得积分10
3秒前
吾日三省吾身完成签到 ,获得积分10
3秒前
自爱悠然完成签到,获得积分10
4秒前
4秒前
5秒前
呆瓜完成签到,获得积分10
6秒前
布丁完成签到,获得积分10
6秒前
朴素的士晋完成签到,获得积分10
6秒前
燕尔蓝发布了新的文献求助10
6秒前
我是王浩腾我是健身王完成签到,获得积分10
7秒前
7秒前
杰克李李发布了新的文献求助10
7秒前
wjs0406发布了新的文献求助10
7秒前
老李完成签到,获得积分10
7秒前
落寞寒荷完成签到,获得积分10
8秒前
fly the bike应助莉莉采纳,获得10
8秒前
拟拟发布了新的文献求助10
9秒前
Bo发布了新的文献求助10
9秒前
LCC完成签到 ,获得积分10
9秒前
南乔完成签到,获得积分10
10秒前
yangyang完成签到,获得积分10
10秒前
11秒前
钟是一梦完成签到,获得积分10
11秒前
11秒前
wanci应助Ll采纳,获得10
11秒前
12秒前
12秒前
孟柠柠发布了新的文献求助10
12秒前
青阳完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740