Development and Utilization of Piezoelectric Scaffold Systems for the Modulation of the Physico-Chemical Microenvironment of the Cells to Enhance Their Regenerative Behaviors

压电 纳米纤维 材料科学 纳米技术 静电纺丝 压电系数 纳米结构 纳米材料 纳米发生器 聚合物 复合材料
作者
Gerardo Ico
摘要

Author(s): Ico, Gerardo | Advisor(s): Nam, Jin | Abstract: Piezoelectric polymer, poly(vinylidene-trifluoroethylene) (P(VDF-TrFE)), exhibits excellent characteristics, such as flexibility and biocompatibility, for various biological applications that utilize energy conversion between mechanical strain and electric potentials. However, its typically low piezoelectric properties have limited its use as an effective piezoelectric platform. To address this, electrospinning was utilized as a method to manipulate the nanostructure of P(VDF-TrFE) nanofibers to engineer a high-performing piezoelectric material. More specifically, we show that the piezoelectric performance of P(VDF-TrFE) is size dependent; by dimensional reduction to the nanoscale (30 nm), a transformative enhancement in piezoelectric performance was achieved by the synergistic effects of flexoelectricity materialization and enhanced dipole domain alignment. The electrospun P(VDF-TrFE) at this size scale exhibits an exceptional piezoelectric coefficient, d33, at -108 pm V-1, approaching the same magnitude of more traditional inorganic materials, while maintaining its flexibility.We exploit these high performing P(VDF-TrFE) nanofibers for specific biological applications. In one aspect, the large surface area-to-volume ratio inherent to nanomaterials, together with the transformative piezoelectric properties, allowed us to use the material as an ultrasensitive, acoustic-responsive, drug delivery platform driven by the direct piezoelectric effect. The intrinsic negative zeta potential was utilized to electrostatically load cationic drug molecules. We show that the drug release sensitivity of the P(VDF-TrFE) nanofibers depends on the fiber diameter, thus piezoelectric properties. We further showed that the drug release quantity can be tuned by applied acoustic pressure or number of acoustic doses for specific tissue applications. Additionally, through the direct piezoelectric effect, we also demonstrated the utility of P(VDF-TrFE) nanofibers with an aligned morphology in neural tissue engineering. We demonstrate that the piezoelectric P(VDF-TrFE) nanofibers provide a means to culture neural stem cells while electrically stimulating the cells by acoustic actuation of the scaffold, generating electric potentials that were utilized to modulate the cellular behaviors. The electrical stimulation of neural stem cells resulted in neural stem cell differentiation towards different phenotypes, including neurons, oligodendrocytes, and astrocytes, demonstrating the potential utility of the piezoelectric scaffolds for engineering neural tissues composed of multiple cell phenotypes.Finally, a proof-of-concept cell culture platform that can modulate the mechanical properties of cell culture scaffolds on demand, was devised based on the indirect piezoelectric effect. Microfabricated interdigitated electrodes were designed, via computational simulations, to act as an electric field-generating substrate for the P(VDF-TrFE) scaffold. We showed that the stiffness of the P(VDF-TrFE) nanofibers electrospun onto such interdigitated electrodes can be precisely controlled by modulating the applied electric fields across the electrodes. The results demonstrate the significant potential of electrospun piezoelectric nanofibers for a cell culture substrate with an on-demand change of the physical cellular microenvironment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助我不接受采纳,获得10
1秒前
不安的鹤轩完成签到,获得积分20
1秒前
lluuoo发布了新的文献求助10
1秒前
所所应助哭泣的冰海采纳,获得10
1秒前
1秒前
zaphkiel完成签到 ,获得积分10
1秒前
ssss完成签到,获得积分10
1秒前
隐形曼青应助李无敌采纳,获得10
1秒前
乐观小之发布了新的文献求助10
2秒前
无限尔云完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
胡萝卜发布了新的文献求助10
3秒前
白桃完成签到,获得积分0
4秒前
浮游应助Judy采纳,获得10
4秒前
4秒前
5秒前
zhtgang完成签到,获得积分10
5秒前
zcl应助ahshdh采纳,获得200
6秒前
小蘑菇应助yuchuncheng采纳,获得10
6秒前
lxlx发布了新的文献求助10
6秒前
FashionBoy应助YoungLee采纳,获得10
7秒前
8秒前
珪璋发布了新的文献求助10
8秒前
无私的瑶完成签到,获得积分10
8秒前
DDDDD发布了新的文献求助10
8秒前
松果完成签到,获得积分10
9秒前
水煮牛肉发布了新的文献求助10
9秒前
千千完成签到,获得积分10
9秒前
Alvienan完成签到,获得积分10
10秒前
10秒前
10秒前
汉堡包应助ZY采纳,获得10
11秒前
12秒前
笑点解析举报qls123求助涉嫌违规
12秒前
bocai完成签到,获得积分10
13秒前
14秒前
栗子发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905167
求助须知:如何正确求助?哪些是违规求助? 4183256
关于积分的说明 12989553
捐赠科研通 3949290
什么是DOI,文献DOI怎么找? 2165918
邀请新用户注册赠送积分活动 1184444
关于科研通互助平台的介绍 1090705