Comparison of Energy Consumption of Osmotically Assisted Reverse Osmosis and Low-Salt-Rejection Reverse Osmosis for Brine Management

卤水 反渗透 正渗透 能源消耗 渗透力 环境科学 渗透 化学 采出水 环境工程 缓压渗透 制浆造纸工业 盐度 工艺工程 微咸水 工程类 地质学 海洋学 电气工程 生物化学 有机化学
作者
Zhangxin Wang,Dejun Feng,Yuanmiaoliang Chen,Di He,Menachem Elimelech
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (15): 10714-10723 被引量:55
标识
DOI:10.1021/acs.est.1c01638
摘要

Minimum and zero liquid discharge (MLD/ZLD) are emerging brine management strategies that attract heightened attention. Although conventional reverse osmosis (RO) can improve the energy efficiency of MLD/ZLD processes, its application is limited by the maximum hydraulic pressure (ΔPmax) that can be applied in current membrane modules. To overcome such limitation, novel RO-based technologies, including osmotically assisted RO (OARO) and low-salt-rejection RO (LSRRO), have been proposed. Herein, we utilize process modeling to systematically compare the energy consumption of OARO and LSRRO for MLD/ZLD applications. Our modeling results show that the specific energy consumption (SEC) of LSRRO is lower (by up to ∼30%) than that of OARO for concentrating moderately saline feed waters (<∼35,000 mg/L TDS) to meet MLD/ZLD goals, whereas the SEC of OARO is lower (by up to ∼40%) than that of LSSRO for concentrating higher salinity feed waters (>∼70,000 mg/L TDS). However, by implementing more stages and/or an elevated ΔPmax, LSRRO has the potential to outperform OARO energetically for treating high-salinity feed waters. Notably, the SEC of both OARO and LSRRO could be 50% lower than that of mechanical vapor compressor, the commonly used brine concentrator in MLD/ZLD applications. We conclude with a discussion on the practicability of OARO and LSRRO based on membrane module availability and capital cost, suggesting that LSRRO could potentially be more feasible than OARO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
neechine完成签到 ,获得积分10
刚刚
晚风发布了新的文献求助10
刚刚
choyng完成签到,获得积分10
1秒前
Yancey完成签到,获得积分10
1秒前
OVERLXRD完成签到,获得积分10
1秒前
lz1023完成签到,获得积分10
1秒前
机智初夏发布了新的文献求助10
1秒前
ygwu0946完成签到,获得积分10
1秒前
Jack完成签到,获得积分10
2秒前
2秒前
24号甜冰茶完成签到,获得积分10
2秒前
kingwhitewing发布了新的文献求助10
2秒前
小张医生完成签到,获得积分10
2秒前
慕青应助WZQ采纳,获得10
3秒前
lzx666发布了新的文献求助10
3秒前
风格发布了新的文献求助10
4秒前
4秒前
英俊的铭应助艺成成采纳,获得10
4秒前
白白拜拜完成签到,获得积分10
5秒前
淡定完成签到,获得积分20
5秒前
KK完成签到,获得积分10
6秒前
6秒前
7秒前
小巧雪糕发布了新的文献求助10
8秒前
梁Sir发布了新的文献求助10
8秒前
SYLH应助Liao采纳,获得10
8秒前
看云啊完成签到,获得积分10
10秒前
林珍发布了新的文献求助20
11秒前
勿明应助xiong采纳,获得30
11秒前
lzx666完成签到,获得积分20
11秒前
别止发布了新的文献求助10
11秒前
可爱的函函应助xuxu采纳,获得10
12秒前
12秒前
xinanan完成签到,获得积分10
12秒前
12秒前
甜筒超好吃完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
NOT发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552503
求助须知:如何正确求助?哪些是违规求助? 3128579
关于积分的说明 9378740
捐赠科研通 2827750
什么是DOI,文献DOI怎么找? 1554537
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714980