A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system

残余物 电池(电) 云计算 计算机科学 可靠性(半导体) 数据集 过程(计算) 卷积神经网络 数据挖掘 人工智能 可靠性工程 算法 工程类 功率(物理) 量子力学 操作系统 物理
作者
Qisong Zhang,Lin Yang,Wenchao Guo,Jiaxi Qiang,Peng Cheng,Qinyi Li,Zhongwei Deng
出处
期刊:Energy [Elsevier]
卷期号:241: 122716-122716 被引量:55
标识
DOI:10.1016/j.energy.2021.122716
摘要

Accurate prediction of the battery remaining useful life (RUL) at different operating conditions is critical for the battery management system to guarantee safe and efficient operation. However, because of the complicated degradation mechanisms inside the battery, it is extremely challenging to predict the battery life by measuring the external variables. Due to the sparse and random segment data in practical applications, the existing methods are difficult to be applied for online prediction. In this paper, a hybrid parallel residual convolutional neural networks (HPR CNN) model for RUL prediction is proposed. By fusing the charging data of voltage, current and temperature curves in multiple cycles, the hidden feature information of different depths is effectively extracted through the residual network. Based on the sparse data corresponding to only 20% charging capacity, combined with a cloud computing system, this method is able to achieve online prediction in various practical applications. By calculating the difference between each cycle as supplementary input data, the method is able to predict the RUL of a battery with high accuracy and reliability. Validated by a public data set and compared with other methods, the proposed method achieves a low test error of 4.15%, which is promising to be applied in the conditions of random charging process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Draven发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
3秒前
cc完成签到,获得积分10
3秒前
3秒前
3秒前
CodeCraft应助jiang伟采纳,获得10
3秒前
星辰大海应助海风奕婕采纳,获得30
4秒前
ZZQ完成签到,获得积分10
4秒前
一九发布了新的文献求助10
5秒前
kk完成签到,获得积分10
6秒前
6秒前
miaomiao_ma完成签到,获得积分10
8秒前
ZHANG发布了新的文献求助10
8秒前
独摇之完成签到,获得积分10
9秒前
9秒前
9秒前
格格应助Y123采纳,获得10
9秒前
10秒前
清爽代双完成签到,获得积分10
11秒前
怡然的绿蕊完成签到,获得积分20
11秒前
jie发布了新的文献求助10
11秒前
jiang伟完成签到,获得积分10
12秒前
12秒前
含糊的清完成签到,获得积分20
13秒前
隐形曼青应助111采纳,获得10
13秒前
一九完成签到,获得积分10
13秒前
14秒前
14秒前
lalala发布了新的文献求助10
15秒前
jiang伟发布了新的文献求助10
15秒前
桐桐应助mc采纳,获得10
15秒前
15秒前
16秒前
16秒前
hhhhhhan616完成签到,获得积分10
17秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655