A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system

残余物 电池(电) 云计算 计算机科学 可靠性(半导体) 数据集 过程(计算) 锂离子电池 卷积神经网络 数据挖掘 人工智能 可靠性工程 算法 工程类 功率(物理) 操作系统 物理 量子力学
作者
Qisong Zhang,Lin Yang,Wenchao Guo,Jiaxi Qiang,Peng Cheng,Qinyi Li,Zhongwei Deng
出处
期刊:Energy [Elsevier]
卷期号:241: 122716-122716 被引量:73
标识
DOI:10.1016/j.energy.2021.122716
摘要

Accurate prediction of the battery remaining useful life (RUL) at different operating conditions is critical for the battery management system to guarantee safe and efficient operation. However, because of the complicated degradation mechanisms inside the battery, it is extremely challenging to predict the battery life by measuring the external variables. Due to the sparse and random segment data in practical applications, the existing methods are difficult to be applied for online prediction. In this paper, a hybrid parallel residual convolutional neural networks (HPR CNN) model for RUL prediction is proposed. By fusing the charging data of voltage, current and temperature curves in multiple cycles, the hidden feature information of different depths is effectively extracted through the residual network. Based on the sparse data corresponding to only 20% charging capacity, combined with a cloud computing system, this method is able to achieve online prediction in various practical applications. By calculating the difference between each cycle as supplementary input data, the method is able to predict the RUL of a battery with high accuracy and reliability. Validated by a public data set and compared with other methods, the proposed method achieves a low test error of 4.15%, which is promising to be applied in the conditions of random charging process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
辛普森完成签到,获得积分10
刚刚
顺顺顺顺完成签到 ,获得积分10
刚刚
爱吃蔬菜完成签到,获得积分10
1秒前
秋秋儿完成签到,获得积分10
1秒前
wy完成签到,获得积分10
2秒前
888完成签到,获得积分10
2秒前
2秒前
火花发布了新的文献求助10
3秒前
Sharif318完成签到,获得积分10
3秒前
充电宝应助TiAmo采纳,获得10
4秒前
Emper发布了新的文献求助10
4秒前
思源应助踟蹰采纳,获得10
4秒前
4秒前
5秒前
Kurenai发布了新的文献求助100
5秒前
三岁完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
yang完成签到,获得积分10
5秒前
杰杰发布了新的文献求助20
6秒前
科研通AI6应助222采纳,获得10
6秒前
wsj发布了新的文献求助10
7秒前
st完成签到,获得积分10
7秒前
活力的含桃完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
zhq发布了新的文献求助10
9秒前
得失心的诅咒完成签到 ,获得积分10
10秒前
10秒前
10秒前
李健的小迷弟应助菠萝采纳,获得10
10秒前
11秒前
浮游应助哈哈哈哈哈采纳,获得10
11秒前
mmm完成签到,获得积分10
11秒前
12秒前
淡淡鹏飞完成签到,获得积分10
13秒前
完美世界应助周易采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939