3D asymmetric expectation‐maximization attention network for brain tumor segmentation

计算机科学 分割 人工智能 最大化 块(置换群论) 模式识别(心理学) 计算 卷积神经网络 算法 数学 几何学 数学优化
作者
Jianxin Zhang,Zongkang Jiang,Dongwei Li,Qiule Sun,Yaqing Hou,Bin Liu
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:35 (5) 被引量:7
标识
DOI:10.1002/nbm.4657
摘要

Automatic brain tumor segmentation on MRI is a prerequisite to provide a quantitative and intuitive assistance for clinical diagnosis and treatment. Meanwhile, 3D deep neural network related brain tumor segmentation models have demonstrated considerable accuracy improvement over corresponding 2D methodologies. However, 3D brain tumor segmentation models generally suffer from high computation cost. Motivated by a recently proposed 3D dilated multi-fiber network (DMF-Net) architecture that pays more attention to reduction of computation cost, we present in this work a novel encoder-decoder neural network, ie a 3D asymmetric expectation-maximization attention network (AEMA-Net), to automatically segment brain tumors. We modify DMF-Net by introducing an asymmetric convolution block into a multi-fiber unit and a dilated multi-fiber unit to capture more powerful deep features for the brain tumor segmentation. In addition, AEMA-Net further incorporates an expectation-maximization attention (EMA) module into the DMF-Net by embedding the EMA block in the third stage of skip connection, which focuses on capturing the long-range dependence of context. We extensively evaluate AEMA-Net on three MRI brain tumor segmentation benchmarks of BraTS 2018, 2019 and 2020 datasets. Experimental results demonstrate that AEMA-Net outperforms both 3D U-Net and DMF-Net, and it achieves competitive performance compared with the state-of-the-art brain tumor segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
bonnie应助LLY采纳,获得50
2秒前
2秒前
kjaiod完成签到,获得积分10
2秒前
林伯格完成签到,获得积分10
3秒前
科研通AI6应助wangyiren采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
顾矜应助无心的夏烟采纳,获得10
5秒前
cy__发布了新的文献求助10
5秒前
科研通AI2S应助赣南橙采纳,获得10
6秒前
快记晓霜应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
曾经青柏完成签到,获得积分10
6秒前
咸鱼lmye发布了新的文献求助10
6秒前
爆米花应助张力仁采纳,获得10
6秒前
宁静致远应助科研通管家采纳,获得10
6秒前
nancylan应助Ling采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
bkagyin应助王王采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
星辰大海应助松本润迷妹采纳,获得10
8秒前
Ava应助科研通管家采纳,获得20
8秒前
8秒前
Hello应助科研通管家采纳,获得10
8秒前
LL完成签到 ,获得积分10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
汉堡包应助如风随水采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
Ankher发布了新的文献求助20
8秒前
8秒前
kister应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260690
求助须知:如何正确求助?哪些是违规求助? 4422036
关于积分的说明 13764988
捐赠科研通 4296360
什么是DOI,文献DOI怎么找? 2357306
邀请新用户注册赠送积分活动 1353657
关于科研通互助平台的介绍 1314921