Deep Manifold Learning for Dynamic MR Imaging

人工智能 梯度下降 非线性降维 歧管对齐 黎曼流形 计算机科学 正规化(语言学) 不变流形 深度学习 歧管(流体力学) 先验概率 张量(固有定义) 人工神经网络 数学优化 算法 数学 工程类 数学分析 几何学 贝叶斯概率 机械工程 降维
作者
Ziwen Ke,Zhuo‐Xu Cui,Wenqi Huang,Jing Cheng,Sen Jia,Leslie Ying,Yanjie Zhu,Dong Liang
出处
期刊:IEEE transactions on computational imaging 卷期号:7: 1314-1327 被引量:22
标识
DOI:10.1109/tci.2021.3131564
摘要

Recently, low-dimensional manifold regularization has been recognized as a competitive method for accelerated cardiac MRI, due to its ability to capture temporal correlations. However, existing methods have not been performed with the nonlinear structure of an underlying manifold. In this paper, we propose a deep learning method in an unrolling manner for accelerated cardiac MRI on a low-dimensional manifold. Specifically, a fixed low-rank tensor (Riemannian) manifold is chosen to capture the strong temporal correlations of dynamic signals; the reconstruction problem is modeled as a CS-based optimization problem on this manifold. Following the manifold structure, a Riemannian gradient descent (RGD) method is adopted to solve this problem. Finally, the RGD algorithm is unrolled into a neural network, called Manifold-Net, on the manifold to avoid the long computation time and the challenging parameter selection. The experimental results at high accelerations demonstrate that the proposed method can obtain improved reconstruction compared with three conventional methods (k-t SLR, SToRM and k-t MLSD) and three state-of-the-art deep learning-based methods (DC-CNN, CRNN, and SLR-Net). To our knowledge, this work represents the first study to unroll the iterative optimization procedure into neural networks on manifolds. Moreover, the designed Manifold-Net provides a new mechanism for low-rank priors in dynamic MRI and should also prove useful for fast reconstruction in other dynamic imaging problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oh发布了新的文献求助10
刚刚
1秒前
1秒前
朝阳完成签到,获得积分10
1秒前
材1完成签到 ,获得积分10
2秒前
QuickSurf完成签到,获得积分10
2秒前
3秒前
程意善完成签到,获得积分10
3秒前
Meng完成签到,获得积分10
3秒前
fuga发布了新的文献求助10
4秒前
5秒前
Jack发布了新的文献求助10
5秒前
96ll完成签到,获得积分10
6秒前
7秒前
小崔加油完成签到 ,获得积分10
7秒前
7秒前
7秒前
生动不平发布了新的文献求助10
7秒前
8秒前
酷波er应助老实的思卉采纳,获得10
8秒前
Akim应助Lcd采纳,获得10
8秒前
8秒前
xps发布了新的文献求助10
8秒前
9秒前
cczy发布了新的文献求助10
9秒前
时来运转发布了新的文献求助10
11秒前
11秒前
11秒前
ZHANG发布了新的文献求助10
12秒前
伶俐芷珊发布了新的文献求助10
12秒前
12秒前
chen7发布了新的文献求助10
12秒前
椛柚发布了新的文献求助10
12秒前
12秒前
13秒前
煎熬日发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
臻酒完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264885
求助须知:如何正确求助?哪些是违规求助? 4425005
关于积分的说明 13775053
捐赠科研通 4300292
什么是DOI,文献DOI怎么找? 2359611
邀请新用户注册赠送积分活动 1355724
关于科研通互助平台的介绍 1317017