Deep Manifold Learning for Dynamic MR Imaging

人工智能 梯度下降 非线性降维 歧管对齐 黎曼流形 计算机科学 正规化(语言学) 不变流形 深度学习 歧管(流体力学) 先验概率 张量(固有定义) 人工神经网络 数学优化 算法 数学 工程类 数学分析 几何学 贝叶斯概率 机械工程 降维
作者
Ziwen Ke,Zhuo‐Xu Cui,Wenqi Huang,Jing Cheng,Sen Jia,Leslie Ying,Yanjie Zhu,Dong Liang
出处
期刊:IEEE transactions on computational imaging 卷期号:7: 1314-1327 被引量:22
标识
DOI:10.1109/tci.2021.3131564
摘要

Recently, low-dimensional manifold regularization has been recognized as a competitive method for accelerated cardiac MRI, due to its ability to capture temporal correlations. However, existing methods have not been performed with the nonlinear structure of an underlying manifold. In this paper, we propose a deep learning method in an unrolling manner for accelerated cardiac MRI on a low-dimensional manifold. Specifically, a fixed low-rank tensor (Riemannian) manifold is chosen to capture the strong temporal correlations of dynamic signals; the reconstruction problem is modeled as a CS-based optimization problem on this manifold. Following the manifold structure, a Riemannian gradient descent (RGD) method is adopted to solve this problem. Finally, the RGD algorithm is unrolled into a neural network, called Manifold-Net, on the manifold to avoid the long computation time and the challenging parameter selection. The experimental results at high accelerations demonstrate that the proposed method can obtain improved reconstruction compared with three conventional methods (k-t SLR, SToRM and k-t MLSD) and three state-of-the-art deep learning-based methods (DC-CNN, CRNN, and SLR-Net). To our knowledge, this work represents the first study to unroll the iterative optimization procedure into neural networks on manifolds. Moreover, the designed Manifold-Net provides a new mechanism for low-rank priors in dynamic MRI and should also prove useful for fast reconstruction in other dynamic imaging problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhangjianan完成签到,获得积分10
1秒前
浮游应助59采纳,获得10
1秒前
耿海旭发布了新的文献求助10
3秒前
旅行者完成签到,获得积分10
4秒前
4秒前
Qo日不落o发布了新的文献求助10
5秒前
5秒前
Singularity发布了新的文献求助10
5秒前
7秒前
耶啵完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助150
9秒前
11秒前
陈陈完成签到 ,获得积分10
11秒前
yuyyy完成签到,获得积分20
12秒前
北沐发布了新的文献求助10
13秒前
Zoe013完成签到 ,获得积分10
14秒前
Mxaxxxx发布了新的文献求助10
14秒前
领导范儿应助任怡采纳,获得10
16秒前
water完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
18秒前
19秒前
蓝胖子完成签到,获得积分10
19秒前
天神完成签到,获得积分10
19秒前
21秒前
宋映梦完成签到 ,获得积分10
21秒前
22秒前
VioletRyu发布了新的文献求助10
22秒前
舒服的尔蓝完成签到,获得积分10
23秒前
小鹏哥完成签到,获得积分10
23秒前
段落落发布了新的文献求助10
24秒前
感动芷珊完成签到 ,获得积分10
24秒前
阿楚发布了新的文献求助10
24秒前
kk119发布了新的文献求助10
25秒前
李健应助yuyyy采纳,获得10
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408