Deep Manifold Learning for Dynamic MR Imaging

人工智能 梯度下降 非线性降维 歧管对齐 黎曼流形 计算机科学 正规化(语言学) 不变流形 深度学习 歧管(流体力学) 先验概率 张量(固有定义) 人工神经网络 数学优化 算法 数学 工程类 数学分析 几何学 贝叶斯概率 机械工程 降维
作者
Ziwen Ke,Zhuo‐Xu Cui,Wenqi Huang,Jing Cheng,Sen Jia,Leslie Ying,Yanjie Zhu,Dong Liang
出处
期刊:IEEE transactions on computational imaging 卷期号:7: 1314-1327 被引量:22
标识
DOI:10.1109/tci.2021.3131564
摘要

Recently, low-dimensional manifold regularization has been recognized as a competitive method for accelerated cardiac MRI, due to its ability to capture temporal correlations. However, existing methods have not been performed with the nonlinear structure of an underlying manifold. In this paper, we propose a deep learning method in an unrolling manner for accelerated cardiac MRI on a low-dimensional manifold. Specifically, a fixed low-rank tensor (Riemannian) manifold is chosen to capture the strong temporal correlations of dynamic signals; the reconstruction problem is modeled as a CS-based optimization problem on this manifold. Following the manifold structure, a Riemannian gradient descent (RGD) method is adopted to solve this problem. Finally, the RGD algorithm is unrolled into a neural network, called Manifold-Net, on the manifold to avoid the long computation time and the challenging parameter selection. The experimental results at high accelerations demonstrate that the proposed method can obtain improved reconstruction compared with three conventional methods (k-t SLR, SToRM and k-t MLSD) and three state-of-the-art deep learning-based methods (DC-CNN, CRNN, and SLR-Net). To our knowledge, this work represents the first study to unroll the iterative optimization procedure into neural networks on manifolds. Moreover, the designed Manifold-Net provides a new mechanism for low-rank priors in dynamic MRI and should also prove useful for fast reconstruction in other dynamic imaging problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酒颜完成签到 ,获得积分20
刚刚
1秒前
zyj完成签到,获得积分10
1秒前
1秒前
ding应助2mo采纳,获得10
2秒前
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
orixero应助猫猫逃离二次元采纳,获得10
3秒前
anasy应助科研通管家采纳,获得10
3秒前
小伙子完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
十三应助科研通管家采纳,获得20
4秒前
anasy应助科研通管家采纳,获得10
4秒前
刘婉敏应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
30应助科研通管家采纳,获得50
4秒前
烟花应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
wxyshare应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
wanci应助居居子采纳,获得10
5秒前
anasy应助科研通管家采纳,获得10
5秒前
5秒前
AUK发布了新的文献求助10
5秒前
Ava应助yy采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183871
求助须知:如何正确求助?哪些是违规求助? 4370008
关于积分的说明 13608357
捐赠科研通 4221858
什么是DOI,文献DOI怎么找? 2315513
邀请新用户注册赠送积分活动 1314083
关于科研通互助平台的介绍 1263010