Deep Manifold Learning for Dynamic MR Imaging

人工智能 梯度下降 非线性降维 歧管对齐 黎曼流形 计算机科学 正规化(语言学) 不变流形 深度学习 歧管(流体力学) 先验概率 张量(固有定义) 人工神经网络 数学优化 算法 数学 工程类 数学分析 几何学 贝叶斯概率 机械工程 降维
作者
Ziwen Ke,Zhuo‐Xu Cui,Wenqi Huang,Jing Cheng,Sen Jia,Leslie Ying,Yanjie Zhu,Dong Liang
出处
期刊:IEEE transactions on computational imaging 卷期号:7: 1314-1327 被引量:22
标识
DOI:10.1109/tci.2021.3131564
摘要

Recently, low-dimensional manifold regularization has been recognized as a competitive method for accelerated cardiac MRI, due to its ability to capture temporal correlations. However, existing methods have not been performed with the nonlinear structure of an underlying manifold. In this paper, we propose a deep learning method in an unrolling manner for accelerated cardiac MRI on a low-dimensional manifold. Specifically, a fixed low-rank tensor (Riemannian) manifold is chosen to capture the strong temporal correlations of dynamic signals; the reconstruction problem is modeled as a CS-based optimization problem on this manifold. Following the manifold structure, a Riemannian gradient descent (RGD) method is adopted to solve this problem. Finally, the RGD algorithm is unrolled into a neural network, called Manifold-Net, on the manifold to avoid the long computation time and the challenging parameter selection. The experimental results at high accelerations demonstrate that the proposed method can obtain improved reconstruction compared with three conventional methods (k-t SLR, SToRM and k-t MLSD) and three state-of-the-art deep learning-based methods (DC-CNN, CRNN, and SLR-Net). To our knowledge, this work represents the first study to unroll the iterative optimization procedure into neural networks on manifolds. Moreover, the designed Manifold-Net provides a new mechanism for low-rank priors in dynamic MRI and should also prove useful for fast reconstruction in other dynamic imaging problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿应助yxy采纳,获得30
1秒前
JamesPei应助vigour采纳,获得10
1秒前
1秒前
Akira关注了科研通微信公众号
2秒前
5秒前
5秒前
小猪佩奇用ak完成签到,获得积分20
5秒前
5秒前
wuwu发布了新的文献求助10
5秒前
6秒前
Chaimengdi完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
9秒前
菲菲完成签到 ,获得积分10
10秒前
caffeine完成签到,获得积分10
10秒前
研友_VZG7GZ应助苗苗采纳,获得10
10秒前
123完成签到 ,获得积分10
10秒前
粤十一发布了新的文献求助10
11秒前
11秒前
ljy完成签到,获得积分10
12秒前
13秒前
Stella应助nnnnn采纳,获得30
13秒前
卿莞尔发布了新的文献求助10
13秒前
14秒前
14秒前
16秒前
浮游应助高大的天晴采纳,获得10
16秒前
haizz完成签到 ,获得积分10
16秒前
16秒前
doudou完成签到 ,获得积分10
17秒前
杨yyyyyyy发布了新的文献求助10
18秒前
所所应助wuwu采纳,获得10
18秒前
嘿嘿应助Kenny采纳,获得10
18秒前
林夏完成签到,获得积分10
19秒前
neinei发布了新的文献求助10
19秒前
烂漫代曼发布了新的文献求助10
21秒前
yeban发布了新的文献求助10
21秒前
SciGPT应助果子采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5359909
求助须知:如何正确求助?哪些是违规求助? 4490632
关于积分的说明 13979853
捐赠科研通 4393128
什么是DOI,文献DOI怎么找? 2413235
邀请新用户注册赠送积分活动 1406035
关于科研通互助平台的介绍 1380426