P.123: Establishing the Controlled Delivery of VEGF Using a Hydrogel Loaded Soft Robotic Drug Delivery System With the Aim to Prevascularise Implant Site for Islet Transplantation

血管内皮生长因子 生物医学工程 药物输送 移植 血管生成 自愈水凝胶 植入 软组织 医学 化学 外科 材料科学 纳米技术 内科学 血管内皮生长因子受体 有机化学
作者
Eimear Wallace,Tapas Mitra,Lucien H. J. Schreiber,Giulia Lattinizi,Gabriella Bellavia,Garry P. Duffy
出处
期刊:Transplantation [Ovid Technologies (Wolters Kluwer)]
卷期号:105 (12S1): S47-S48 被引量:1
标识
DOI:10.1097/01.tp.0000804568.54768.83
摘要

Duffy Lab Group, National University of Ireland Galway. Introduction: Over 60% of islets transplanted in macrodevices are lost immediately post transplantation due to hypoxia from inadequate early vascularisation [1][2][3]. Prevascularisation of the implant site by spatiotemporally delivering vascular endothelial growth factor (VEGF), the most prominent angiogenic growth factor [4], is a potential solution [5]. VEGF has a half-life of only 50 mins at body temperature [6][7] meaning multiple, large doses are required if delivered systemically causing the formation of unstable, leaky blood vessels [7][8] and adverse off-target effects [9]. Current research focuses on encapsulating VEGF in polymer systems via electrostatic interactions, which minimise the risk of protein denaturation [10], but can require a mechanical stimulus to facilitate its release. Mooney et al. increased VEGF release two-fold from alginate hydrogels with mechanical signalling compared to static hydrogel in vitro and when implanted in diabetic mice after femoral artery ligation, collateral vessel formation increased in mechanically stimulated implant sites [11]. Soft robotics utilise materials with similar elastic modulus to soft tissue and can be safely implanted to facilitate mechanical signalling [12]. Dolan et al. showed that modified biomechanics can increase angiogenesis in rats using soft robotic technologies [13]. We aim to release a predetermined amount of electrostatically interacted VEGF from a hydrogel loaded Soft Robotic Drug Delivery (SRDD) system to stimulate angiogenesis in the underlying tissue. Methods:In vitro release studies were performed to optimise an actuation regime for controlled release of the model drug, Fluorescein isothiocyanate–Diethylaminoethyl–Dextran (Dextran) (same charge and molecular weight as VEGF), from a hydrogel loaded SRDD device. The SRDD device was submerged in release media, connected to the external system (Figure 1), actuated using a customisable actuation regime (MatLab®), and concentration of released Dextran determined using absorbance measurements. The actuation regime was modified until the optimal pressure, ramp, and cycle number were selected to facilitate controlled release of Dextran.Results: In the absence of mechanical stimulation, the passive release of Dextran was minimal (<0%). Increasing mechanical stimulation from 0–12 psi increased the release rate of Dextran during pressure optimisation (0 vs 0.15%, p=0.45). Ramp times of 5–30 secs further increased Dextran release (0 vs 2.38%, p=0.06), with ramp of 5-sec showing constant release at each time point. Using 10 psi and 5-sec ramp, cycle numbers were varied from 2–10 with 5 and 10 cycles releasing the greatest amount of Dextran (53.79 vs 68.97%, p<0.005, Figure 2).Conclusion: Actuation of a hydrogel loaded SRDD device is modifiable to facilitate the controlled release of Dextran, which is important for our intended use of releasing VEGF spatiotemporally to prevascularise an implantation site for islet transplantation. DELIVER project that received funding from the European Union’s Horizon 2020 Marie Sklodowska-Curie Actions programme under grant agreement number 812865. References: M. McCall and A. M. James Shapiro, “Update on islet transplantation,” Cold Spring Harb. Perspect. Med., vol. 2, no. 7, 2012, doi: 10.1101/cshperspect.a007823 J. A. Emamaullee and A. M. James Shapiro, “Factors Influencing the Loss of-Cell Mass in Islet Transplantation,” Cell Transplant., vol. 16, pp. 1–8, 2007, Accessed: Apr. 14, 2020. [Online]. Available: www.cognizantcommunication.com M. Khosravi-Maharlooei et al., “Therapy of endocrine disease: Islet transplantation for type 1 diabetes: So close and yet so far away,” European Journal of Endocrinology, vol. 173, no. 5. BioScientifica Ltd., pp. R165–R183, Nov. 01, 2015, doi: 10.1530/EJE-15–0094 K. Skrzypek, M. G. Nibbelink, L. P. Karbaat, M. Karperien, A. van Apeldoorn, and D. Stamatialis, “An important step towards a prevascularized islet macroencapsulation device—effect of micropatterned membranes on development of endothelial cell network,” J. Mater. Sci. Mater. Med., vol. 29, no. 7, Jul. 2018, doi: 10.1007/s10856-018-6102-0 M. W. Laschke and M. D. Menger, “Prevascularization in tissue engineering: Current concepts and future directions,” Biotechnology Advances, vol. 34, no. 2. Elsevier Inc., pp. 112–121, Mar. 01, 2016, doi: 10.1016/j.biotechadv.2015.12.004 Z. Wang, Z. Wang, W. W. Lu, W. Zhen, D. Yang, and S. Peng, “Novel biomaterial strategies for controlled growth factor delivery for biomedical applications,” 2017, doi: 10.1038/am.2017.171 J. D. Weaver et al., “Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites,” Sci. Adv., vol. 3, no. 6, Jun. 2017, doi: 10.1126/sciadv.1700184 N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6. Nature Publishing Group, pp. 669–676, Jun. 01, 2003, doi: 10.1038/nm0603-669 K. Lee, E. A. Silva, and D. J. Mooney, “Growth factor delivery-based tissue engineering: General approaches and a review of recent developments,” Journal of the Royal Society Interface, vol. 8, no. 55. Royal Society, pp. 153–170, Feb. 06, 2011, doi: 10.1098/rsif.2010.0223 F. Gu, B. Amsden, and R. Neufeld, “Sustained delivery of vascular endothelial growth factor with alginate beads,” J. Control. Release, vol. 96, no. 3, pp. 463–472, May 2004, doi: 10.1016/j.jconrel.2004.02.021 K. Y. Lee, M. C. Peters, K. W. Anderson, and D. J. Mooney, “Controlled growth factor release from synthetic extracellular matrices,” Nature, vol. 408, no. 6815, pp. 998–1000, 2000, doi: 10.1038/35050141 P. Polygerinos et al., “Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction,” Advanced Engineering Materials, vol. 19, no. 12. Wiley-VCH Verlag, Dec. 01, 2017, doi: 10.1002/adem.201700016 E. B. Dolan et al., “An actuatable soft reservoir modulates host foreign body response,” Sci. Robot., vol. 4, no. 33, p. eaax7043, 2019, doi: 10.1126/scirobotics.aax7043

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七发布了新的文献求助10
刚刚
cwm发布了新的文献求助10
刚刚
尊敬的安露完成签到,获得积分20
刚刚
碗碗豆喵发布了新的文献求助20
1秒前
霸气鞯完成签到 ,获得积分10
1秒前
jun完成签到,获得积分10
1秒前
雨天完成签到,获得积分10
1秒前
七七完成签到,获得积分10
1秒前
lily完成签到,获得积分10
1秒前
米粥饭完成签到,获得积分10
2秒前
NexusExplorer应助张雨兴采纳,获得10
2秒前
baolong完成签到,获得积分10
2秒前
寒冷的月亮完成签到,获得积分10
2秒前
ddsyg126完成签到,获得积分10
2秒前
冬谎完成签到,获得积分10
2秒前
ajiang完成签到,获得积分10
3秒前
Ho完成签到,获得积分10
3秒前
朵朵完成签到,获得积分10
3秒前
解语花发布了新的文献求助30
3秒前
3秒前
甜蜜的马里奥完成签到,获得积分10
3秒前
5秒前
熬夜朱古力完成签到,获得积分20
5秒前
赵小胖完成签到,获得积分10
5秒前
opus17完成签到,获得积分10
5秒前
xywang发布了新的文献求助10
5秒前
超然度陈完成签到,获得积分10
5秒前
七七发布了新的文献求助10
5秒前
天马行空完成签到,获得积分10
6秒前
123完成签到 ,获得积分10
6秒前
坦率尔琴完成签到,获得积分10
8秒前
钱学森完成签到,获得积分10
8秒前
刘泽民完成签到,获得积分10
8秒前
王文静完成签到 ,获得积分10
8秒前
烟花应助yuki采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
9秒前
微笑芒果完成签到 ,获得积分0
9秒前
情怀应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349