Monocular Depth Estimation With Improved Long-Range Accuracy for UAV Environment Perception

计算机科学 Softmax函数 人工智能 卷积神经网络 计算机视觉 单眼 激光雷达 测距 深度学习 特征(语言学) 航程(航空) 束流调整 无人机 遥感 图像(数学) 电信 生物 地质学 哲学 遗传学 复合材料 语言学 材料科学
作者
Vlad-Cristian Miclea,Sergiu Nedevschi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:27
标识
DOI:10.1109/tgrs.2021.3060513
摘要

Environment perception by computing the depth is a key task for unmanned aerial vehicle (UAV) type systems. Due to the limited load they can carry, most drones are equipped with a single camera. This prevents general-purpose depth perception methods based either on light detection and ranging (LiDAR) or stereo reconstruction to be effectively used on such platforms. Due to the success of convolutional neural networks (CNNs), monocular depth estimation (MDE) methods have become more and more trustworthy, so their usage on drones is convenient. However, very few such methods have been proposed in the literature, mainly due to the few existing constraints and high diversity that unstructured aerial environments pose. To bridge this gap, we propose a novel approach for MDE, capable to work on aerial images. The method initially proposes an original CNN, particularly adapted to such scenarios. This is done by finding an optimal feature extractor, introducing a new scene understanding module, a new loss and a novel softmax transformation layer that facilitate a better convergence. Furthermore, since both short- and long-range accuracy is required for a robust UAV perception, we introduce a learning-based correction method that redistributes the depth points across the entire depth interval. The proposed CNN gives accurate results, while the additional refinement further improves the accuracy with only a few additional computational resources (around 1–2 ms). We initially show the capabilities of our method on synthetic images captured in unstructured aerial scenarios. Then, we prove that our method can work in real-life situations, computing depth from a single image (at multiple pitch angles) captured by a drone flying in a series of field and forest-like environments. In all these situations, the depth is densely estimated with increased accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助陈元元K采纳,获得10
1秒前
yzx关注了科研通微信公众号
1秒前
2秒前
小阿博完成签到,获得积分10
3秒前
離原发布了新的文献求助10
6秒前
6秒前
6秒前
8秒前
未必发布了新的文献求助10
8秒前
9秒前
我是老大应助csuxxm采纳,获得10
9秒前
CJZ完成签到,获得积分10
10秒前
汉堡包应助hhw采纳,获得10
10秒前
LXLTX完成签到,获得积分10
12秒前
12秒前
wure10发布了新的文献求助10
13秒前
Horizon完成签到,获得积分10
14秒前
15秒前
16秒前
orixero应助mufcyang采纳,获得10
16秒前
陈元元K完成签到,获得积分10
17秒前
浅夏发布了新的文献求助10
18秒前
19秒前
pluto应助暴躁的初夏采纳,获得10
19秒前
慕青应助wu采纳,获得10
20秒前
酷波er应助roser采纳,获得10
20秒前
Orange应助fifteen采纳,获得10
20秒前
csuxxm发布了新的文献求助10
21秒前
科目三应助phoenjx采纳,获得10
21秒前
852应助觉得就到家采纳,获得10
23秒前
Zzz关注了科研通微信公众号
23秒前
24秒前
赘婿应助无语啦采纳,获得10
28秒前
29秒前
何晶晶完成签到 ,获得积分10
29秒前
wanci应助好久不见采纳,获得10
29秒前
30秒前
30秒前
30秒前
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154374
求助须知:如何正确求助?哪些是违规求助? 2805268
关于积分的说明 7864039
捐赠科研通 2463452
什么是DOI,文献DOI怎么找? 1311340
科研通“疑难数据库(出版商)”最低求助积分说明 629556
版权声明 601821