Monocular Depth Estimation With Improved Long-Range Accuracy for UAV Environment Perception

计算机科学 Softmax函数 人工智能 卷积神经网络 计算机视觉 单眼 激光雷达 测距 深度学习 特征(语言学) 航程(航空) 束流调整 无人机 遥感 图像(数学) 电信 生物 地质学 哲学 遗传学 复合材料 语言学 材料科学
作者
Vlad-Cristian Miclea,Sergiu Nedevschi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:27
标识
DOI:10.1109/tgrs.2021.3060513
摘要

Environment perception by computing the depth is a key task for unmanned aerial vehicle (UAV) type systems. Due to the limited load they can carry, most drones are equipped with a single camera. This prevents general-purpose depth perception methods based either on light detection and ranging (LiDAR) or stereo reconstruction to be effectively used on such platforms. Due to the success of convolutional neural networks (CNNs), monocular depth estimation (MDE) methods have become more and more trustworthy, so their usage on drones is convenient. However, very few such methods have been proposed in the literature, mainly due to the few existing constraints and high diversity that unstructured aerial environments pose. To bridge this gap, we propose a novel approach for MDE, capable to work on aerial images. The method initially proposes an original CNN, particularly adapted to such scenarios. This is done by finding an optimal feature extractor, introducing a new scene understanding module, a new loss and a novel softmax transformation layer that facilitate a better convergence. Furthermore, since both short- and long-range accuracy is required for a robust UAV perception, we introduce a learning-based correction method that redistributes the depth points across the entire depth interval. The proposed CNN gives accurate results, while the additional refinement further improves the accuracy with only a few additional computational resources (around 1–2 ms). We initially show the capabilities of our method on synthetic images captured in unstructured aerial scenarios. Then, we prove that our method can work in real-life situations, computing depth from a single image (at multiple pitch angles) captured by a drone flying in a series of field and forest-like environments. In all these situations, the depth is densely estimated with increased accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景代丝完成签到,获得积分0
2秒前
reed1220完成签到,获得积分20
2秒前
落后的冬寒完成签到,获得积分10
2秒前
2秒前
Wang发布了新的文献求助10
3秒前
赘婿应助救驾来迟采纳,获得10
4秒前
Cl1audia完成签到,获得积分10
4秒前
XHW完成签到,获得积分10
5秒前
123发布了新的文献求助10
6秒前
斯文的访烟完成签到,获得积分10
6秒前
7秒前
张于小丸子完成签到 ,获得积分10
8秒前
Lilili完成签到,获得积分10
9秒前
卡卡发布了新的文献求助10
10秒前
Jasper应助aaaabc采纳,获得10
10秒前
大东子完成签到,获得积分10
11秒前
去你丫的随机昵称完成签到 ,获得积分10
11秒前
12秒前
123发布了新的文献求助10
12秒前
14秒前
Orange应助王猪猪采纳,获得10
14秒前
水下月完成签到 ,获得积分10
15秒前
15秒前
15秒前
17秒前
17秒前
18秒前
梁小米发布了新的文献求助10
18秒前
19秒前
恋鲸鱼发布了新的文献求助10
19秒前
林lin完成签到,获得积分10
20秒前
迷路凝珍完成签到,获得积分10
20秒前
20秒前
21秒前
福尔摩蔡发布了新的文献求助10
22秒前
22秒前
研友_8D3KzZ发布了新的文献求助10
23秒前
23秒前
yanmengzhen完成签到 ,获得积分10
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744982
求助须知:如何正确求助?哪些是违规求助? 3287938
关于积分的说明 10056348
捐赠科研通 3004088
什么是DOI,文献DOI怎么找? 1649432
邀请新用户注册赠送积分活动 785342
科研通“疑难数据库(出版商)”最低求助积分说明 751049