Monocular Depth Estimation With Improved Long-Range Accuracy for UAV Environment Perception

计算机科学 Softmax函数 人工智能 卷积神经网络 计算机视觉 单眼 激光雷达 测距 深度学习 特征(语言学) 航程(航空) 束流调整 无人机 遥感 图像(数学) 电信 生物 地质学 哲学 遗传学 复合材料 语言学 材料科学
作者
Vlad-Cristian Miclea,Sergiu Nedevschi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:27
标识
DOI:10.1109/tgrs.2021.3060513
摘要

Environment perception by computing the depth is a key task for unmanned aerial vehicle (UAV) type systems. Due to the limited load they can carry, most drones are equipped with a single camera. This prevents general-purpose depth perception methods based either on light detection and ranging (LiDAR) or stereo reconstruction to be effectively used on such platforms. Due to the success of convolutional neural networks (CNNs), monocular depth estimation (MDE) methods have become more and more trustworthy, so their usage on drones is convenient. However, very few such methods have been proposed in the literature, mainly due to the few existing constraints and high diversity that unstructured aerial environments pose. To bridge this gap, we propose a novel approach for MDE, capable to work on aerial images. The method initially proposes an original CNN, particularly adapted to such scenarios. This is done by finding an optimal feature extractor, introducing a new scene understanding module, a new loss and a novel softmax transformation layer that facilitate a better convergence. Furthermore, since both short- and long-range accuracy is required for a robust UAV perception, we introduce a learning-based correction method that redistributes the depth points across the entire depth interval. The proposed CNN gives accurate results, while the additional refinement further improves the accuracy with only a few additional computational resources (around 1–2 ms). We initially show the capabilities of our method on synthetic images captured in unstructured aerial scenarios. Then, we prove that our method can work in real-life situations, computing depth from a single image (at multiple pitch angles) captured by a drone flying in a series of field and forest-like environments. In all these situations, the depth is densely estimated with increased accuracy and reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cruise发布了新的文献求助10
刚刚
1秒前
sdfaef完成签到,获得积分10
1秒前
AUM123发布了新的文献求助10
2秒前
巴卡巴卡完成签到,获得积分10
2秒前
XXQ发布了新的文献求助10
2秒前
3秒前
林菲菲发布了新的文献求助10
4秒前
try发布了新的文献求助10
4秒前
宇宙队发布了新的文献求助10
4秒前
慧子发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
巴卡巴卡发布了新的文献求助10
5秒前
杜可欣发布了新的文献求助10
5秒前
5秒前
芳菲依旧应助紫熊采纳,获得10
5秒前
6秒前
fengfenghao完成签到,获得积分10
6秒前
赘婿应助zkyyy采纳,获得10
6秒前
BB88完成签到,获得积分10
7秒前
小蒋完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
英姑应助LLHHZZ采纳,获得10
8秒前
lishanner完成签到,获得积分10
8秒前
8秒前
Foalphaz发布了新的文献求助10
9秒前
sijietan发布了新的文献求助10
9秒前
9秒前
10秒前
甜甜的平文完成签到 ,获得积分10
10秒前
HXU完成签到,获得积分20
10秒前
10秒前
Yapi完成签到,获得积分10
10秒前
10秒前
庸人何必自扰完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791