荧光粉
大气(单位)
离子
发光
能量转移
还原气氛
兴奋剂
化学
分析化学(期刊)
晶体结构
光致发光
结晶学
矿物学
材料科学
物理
核物理学
气象学
化学物理
光学
环境化学
光电子学
有机化学
作者
Ting Li,Panlai Li,Zhijun Wang,Shuchao Xu,Qiongyu Bai,Zhiping Yang
摘要
Ce/Eu-doped LiBaB9O15 (LBB) samples were prepared via conventional high temperature solid state reactions. The XRD patterns, crystal structures, luminescence properties, and decay times were investigated systematically. Ce3+ ions exist in LBB:xCe3+ that were synthesized in a reducing atmosphere and in an air atmosphere. However, we observed Eu2+ ions in LBB:yEu2+ in a reducing atmosphere and Eu3+ ions in LBB:zEu3+ in an air atmosphere. LBB:0.05Ce3+,yEu2+ phosphors synthesized in a reducing atmosphere only possess Ce3+ and Eu2+ and exhibit a broad excitation band ranging from 350 to 425 nm. A reduction phenomenon of Eu3+ → Eu2+ and coexistence of Ce4+, Ce3+, Eu2+ and Eu3+ were observed when LBB:0.05Ce,wEu phosphors were synthesized in an air atmosphere. There are three processes in LBB:0.05Ce,wEu, i.e., energy transfers from Ce3+ to Eu2+ and from Eu2+ to Eu3+, and metal-metal charge transfer (MMCT) between Ce3+ and Eu3+. Moreover, the MMCT process is dominant in LBB:0.05Ce,wEu due to less efficient energy transfer from Ce3+ to Eu2+. Moreover, the CIE coordinates of LBB:0.05Ce,wEu vary systematically from light blue (0.313, 0.129) to red (0.589, 0.315) for LBB:0.05Ce3+,wEu synthesized in air with the changes in Eu ion concentration. Thus, we can control the color by controlling the synthesis atmospheres.
科研通智能强力驱动
Strongly Powered by AbleSci AI