锌黄锡矿
硫系化合物
材料科学
碲化镉光电
光伏系统
纳米技术
带隙
光电子学
工程物理
捷克先令
电气工程
工程类
作者
Donghyeop Shin,Bayrammurad Saparov,David B. Mitzi
标识
DOI:10.1002/aenm.201602366
摘要
Application of zinc‐blende‐related chalcogenide absorbers such as CdTe and Cu(In,Ga)Se 2 (CIGSe) has enabled remarkable advancement in laboratory‐ and commercial‐scale thin‐film photovoltaic performance; however concerns remain regarding the toxicity (CdTe) and scarcity (CIGSe/CdTe) of the constituent elements. Recently, kesterite‐based Cu 2 ZnSn(S,Se) 4 (CZTSSe) materials have emerged as attractive non‐toxic and earth‐abundant absorber candidates. Despite the similarities between CZTSSe and CIGSe/CdTe, the record power conversion efficiency of CZTSSe solar cells (12.6%) remains significantly lower than that of CIGSe (22.6%) and CdTe (22.1%) devices, with the performance gap primarily being attributed to cationic disordering and associated band tailing. To capture the promise of kesterite‐like materials as prospective “drop‐in” earth‐abundant replacements for closely‐related CIGSe, current research has focused on several key directions to control disorder, including: (i) examination of the interaction between processing conditions and atomic site disorder, (ii) isoelectronic cation substitution to introduce ionic size mismatch, and (iii) structural diversification beyond the zinc‐blende‐type coordination environment. In this review, recent efforts targeting accurate identification and engineering of anti‐site disorder in kesterite‐based CZTSSe are considered. Lessons learned from CZTSSe are applied to other complex chalcogenide semiconductors, in an effort to develop promising pathways to avoid anti‐site disordering and associated band tailing in future high‐performance earth‐abundant photovoltaic technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI