Corrosive precursors used for the preparation of organic–inorganic hybrid perovskite photoactive layers prevent the application of ultrathin metal layers as semitransparent bottom electrodes in perovskite solar cells (PVSCs). This study introduces tin‐oxide (SnO x ) grown by atomic layer deposition (ALD), whose outstanding permeation barrier properties enable the design of an indium‐tin‐oxide (ITO)‐free semitransparent bottom electrode (SnO x /Ag or Cu/SnO x ), in which the metal is efficiently protected against corrosion. Simultaneously, SnO x functions as an electron extraction layer. We unravel the spontaneous formation of a PbI 2 interfacial layer between SnO x and the CH 3 NH 3 PbI 3 perovskite. An interface dipole between SnO x and this PbI 2 layer is found, which depends on the oxidant (water, ozone, or oxygen plasma) used for the ALD growth of SnO x . An electron extraction barrier between perovskite and PbI 2 is identified, which is the lowest in devices based on SnO x grown with ozone. The resulting PVSCs are hysteresis‐free with a stable power conversion efficiency (PCE) of 15.3% and a remarkably high open circuit voltage of 1.17 V. The ITO‐free analogues still achieve a high PCE of 11%.