Multi-Scale Frequency Reconstruction for Guided Depth Map Super-Resolution via Deep Residual Network

残余物 深度图 人工智能 基本事实 计算机科学 深度学习 RGB颜色模型 迭代重建 卷积神经网络 降噪 算法 图像分辨率 马尔可夫随机场 计算机视觉 图像(数学) 图像分割
作者
Yifan Zuo,Qiang Wu,Yuming Fang,Ping An,Liqin Huang,Zhifeng Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 297-306 被引量:62
标识
DOI:10.1109/tcsvt.2018.2890271
摘要

The depth maps obtained by the consumer-level sensors are always noisy in the low-resolution (LR) domain. Existing methods for the guided depth super-resolution, which are based on the pre-defined local and global models, perform well in general cases (e.g., joint bilateral filter and Markov random field). However, such model-based methods may fail to describe the potential relationship between RGB-D image pairs. To solve this problem, this paper proposes a data-driven approach based on the deep convolutional neural network with global and local residual learning. It progressively upsamples the LR depth map guided by the high-resolution intensity image in multiple scales. A global residual learning is adopted to learn the difference between the ground truth and the coarsely upsampled depth map, and the local residual learning is introduced in each scale-dependent reconstruction sub-network. This scheme can restore the depth structure from coarse to fine via multi-scale frequency synthesis. In addition, batch normalization layers are used to improve the performance of depth map denoising. Our method is evaluated in noise-free and noisy cases. A comprehensive comparison against 17 state-of-the-art methods is carried out. The experimental results show that the proposed method has faster convergence speed as well as improved performances based on the qualitative and quantitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼初柳发布了新的文献求助10
刚刚
刚刚
1秒前
科研通AI2S应助周周采纳,获得10
1秒前
1秒前
1秒前
金金金完成签到 ,获得积分10
2秒前
FashionBoy应助H0123采纳,获得10
2秒前
Hello应助TZT采纳,获得10
2秒前
zxm完成签到,获得积分10
2秒前
加菲发布了新的文献求助10
2秒前
3秒前
懵了完成签到,获得积分10
3秒前
gliterr发布了新的文献求助10
3秒前
rmbsLHC发布了新的文献求助50
4秒前
4秒前
am完成签到,获得积分10
4秒前
cm完成签到,获得积分10
5秒前
蓝兰完成签到,获得积分20
6秒前
Jasper应助入江采纳,获得10
6秒前
小落发布了新的文献求助10
6秒前
丘比特应助不是叶子采纳,获得30
6秒前
7秒前
Fine发布了新的文献求助10
7秒前
博林大师发布了新的文献求助10
7秒前
Lucky完成签到,获得积分10
7秒前
8秒前
刻苦的尔白完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
鲤鱼初柳完成签到,获得积分10
8秒前
宠辱不惊应助文件撤销了驳回
10秒前
11秒前
gliterr完成签到,获得积分20
11秒前
Ava应助dong采纳,获得10
11秒前
11秒前
12秒前
13秒前
苏卿发布了新的文献求助10
13秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168966
求助须知:如何正确求助?哪些是违规求助? 2820245
关于积分的说明 7929811
捐赠科研通 2480332
什么是DOI,文献DOI怎么找? 1321320
科研通“疑难数据库(出版商)”最低求助积分说明 633191
版权声明 602497