亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Scale Frequency Reconstruction for Guided Depth Map Super-Resolution via Deep Residual Network

残余物 深度图 人工智能 基本事实 计算机科学 深度学习 RGB颜色模型 迭代重建 卷积神经网络 降噪 算法 图像分辨率 马尔可夫随机场 计算机视觉 图像(数学) 图像分割
作者
Yifan Zuo,Qiang Wu,Yuming Fang,Ping An,Liqin Huang,Zhifeng Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (2): 297-306 被引量:62
标识
DOI:10.1109/tcsvt.2018.2890271
摘要

The depth maps obtained by the consumer-level sensors are always noisy in the low-resolution (LR) domain. Existing methods for the guided depth super-resolution, which are based on the pre-defined local and global models, perform well in general cases (e.g., joint bilateral filter and Markov random field). However, such model-based methods may fail to describe the potential relationship between RGB-D image pairs. To solve this problem, this paper proposes a data-driven approach based on the deep convolutional neural network with global and local residual learning. It progressively upsamples the LR depth map guided by the high-resolution intensity image in multiple scales. A global residual learning is adopted to learn the difference between the ground truth and the coarsely upsampled depth map, and the local residual learning is introduced in each scale-dependent reconstruction sub-network. This scheme can restore the depth structure from coarse to fine via multi-scale frequency synthesis. In addition, batch normalization layers are used to improve the performance of depth map denoising. Our method is evaluated in noise-free and noisy cases. A comprehensive comparison against 17 state-of-the-art methods is carried out. The experimental results show that the proposed method has faster convergence speed as well as improved performances based on the qualitative and quantitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
12秒前
ywl发布了新的文献求助10
15秒前
LIUDEHUA发布了新的文献求助10
16秒前
少7一点8完成签到,获得积分10
17秒前
28秒前
33秒前
36秒前
41秒前
42秒前
chichqq发布了新的文献求助10
46秒前
47秒前
赵世璧发布了新的文献求助10
51秒前
地瓜地瓜完成签到 ,获得积分10
59秒前
Ava应助chichqq采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
汉堡包应助高挑的沛蓝采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
HuiHui完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
苏鱼完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
wsj完成签到,获得积分10
2分钟前
3分钟前
故意的勒发布了新的文献求助10
3分钟前
张晓祁完成签到,获得积分10
3分钟前
yueying完成签到,获得积分10
3分钟前
feihua1完成签到 ,获得积分10
3分钟前
3分钟前
吃了吃了完成签到,获得积分10
3分钟前
3分钟前
3分钟前
131949发布了新的文献求助10
3分钟前
小蜻蜓应助科研通管家采纳,获得30
3分钟前
herococa应助科研通管家采纳,获得10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503031
关于积分的说明 11111168
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870728
科研通“疑难数据库(出版商)”最低求助积分说明 802250