Real-Time Detection of Fall From Bed Using a Single Depth Camera

可穿戴计算机 计算机科学 人工智能 任务(项目管理) 计算机视觉 事件(粒子物理) 边距(机器学习) 实时计算 模拟 机器学习 工程类 嵌入式系统 物理 系统工程 量子力学
作者
Feng Zhao,Zhiguo Cao,Yang Xiao,Jing Mao,Junsong Yuan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 1018-1032 被引量:58
标识
DOI:10.1109/tase.2018.2861382
摘要

Toward the medical and living healthcare for the elderly and patients, fall from bed is a critical accident that may lead to serious injuries. To alleviate this, an essential problem is to detect this event in time for earning the rescue time. Although some efforts that resort to the wearable devices and smart healthcare room have already been paid to address this problem, the performance is still not satisfactory enough for the practical applications. In this paper, a novel fall from a bed detection method is proposed. In particular, the depth camera is used as the visual sensor due to its insensitivity to illumination variation and capacity of privacy protection. To characterize the human activity well, an effective human upper body detection approach able to extract human head and upper body center is proposed using random forest. Compared with the existing widely used human body parsing methods (e.g., Microsoft Kinect SDK or OpenNI SDK), our proposition can still work reliably when human-bed interaction happens. According to the motion information of human upper body, the fall from bed detection task is formulated as a two-class classification problem. Then, it is solved using the large margin nearest neighbor classification approach. Our method can meet the real-time running requirement with the normal computer. In experiments, we construct a fall from bed detection data set that contains the samples from 42 volunteers (26 males and 16 females) for test. The experimental results demonstrate the effectiveness and efficiency of our proposition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
迅速难破发布了新的文献求助10
1秒前
1秒前
2秒前
机智大有完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
上官若男应助小颜采纳,获得10
2秒前
cuarzn发布了新的文献求助10
2秒前
友好的晓亦完成签到,获得积分10
3秒前
ZD完成签到,获得积分10
3秒前
沟通亿心发布了新的文献求助10
3秒前
wyx发布了新的文献求助10
3秒前
科目三应助Honey采纳,获得10
4秒前
喜之郎发布了新的文献求助10
4秒前
赘婿应助快乐达不刘采纳,获得10
4秒前
精灵梦完成签到,获得积分10
4秒前
PL发布了新的文献求助20
5秒前
李梦琦完成签到,获得积分20
5秒前
5秒前
fabian完成签到,获得积分10
5秒前
6秒前
Xue0129完成签到,获得积分10
7秒前
jike发布了新的文献求助10
7秒前
8秒前
纯真的柔发布了新的文献求助10
8秒前
mww完成签到,获得积分10
8秒前
MikiWu完成签到,获得积分10
9秒前
蒋22完成签到 ,获得积分10
9秒前
zoe完成签到 ,获得积分10
9秒前
9秒前
无花果应助skyangar采纳,获得10
9秒前
科研通AI6应助weiyu_u采纳,获得30
9秒前
hehe完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
慕青应助cuarzn采纳,获得10
10秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671