重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Real-Time Detection of Fall From Bed Using a Single Depth Camera

可穿戴计算机 计算机科学 人工智能 任务(项目管理) 计算机视觉 事件(粒子物理) 边距(机器学习) 实时计算 模拟 机器学习 工程类 嵌入式系统 物理 系统工程 量子力学
作者
Feng Zhao,Zhiguo Cao,Yang Xiao,Jing Mao,Junsong Yuan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 1018-1032 被引量:58
标识
DOI:10.1109/tase.2018.2861382
摘要

Toward the medical and living healthcare for the elderly and patients, fall from bed is a critical accident that may lead to serious injuries. To alleviate this, an essential problem is to detect this event in time for earning the rescue time. Although some efforts that resort to the wearable devices and smart healthcare room have already been paid to address this problem, the performance is still not satisfactory enough for the practical applications. In this paper, a novel fall from a bed detection method is proposed. In particular, the depth camera is used as the visual sensor due to its insensitivity to illumination variation and capacity of privacy protection. To characterize the human activity well, an effective human upper body detection approach able to extract human head and upper body center is proposed using random forest. Compared with the existing widely used human body parsing methods (e.g., Microsoft Kinect SDK or OpenNI SDK), our proposition can still work reliably when human-bed interaction happens. According to the motion information of human upper body, the fall from bed detection task is formulated as a two-class classification problem. Then, it is solved using the large margin nearest neighbor classification approach. Our method can meet the real-time running requirement with the normal computer. In experiments, we construct a fall from bed detection data set that contains the samples from 42 volunteers (26 males and 16 females) for test. The experimental results demonstrate the effectiveness and efficiency of our proposition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静从雪发布了新的文献求助10
刚刚
微笑的语芙完成签到,获得积分10
刚刚
haku发布了新的文献求助10
刚刚
刚刚
sdd完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
huangjixiang发布了新的文献求助10
1秒前
饭饭大王发布了新的文献求助10
2秒前
疯狂硕士完成签到,获得积分20
2秒前
2秒前
张毅德完成签到 ,获得积分10
2秒前
大方友菱关注了科研通微信公众号
2秒前
聪明天玉完成签到,获得积分10
2秒前
3秒前
赘婿应助眯眯眼的枕头采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
Nano完成签到,获得积分10
5秒前
丘比特应助安静的寒蕾采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
文静从雪完成签到,获得积分10
7秒前
许小六发布了新的文献求助10
7秒前
7秒前
7秒前
科研通AI6应助酷炫的语梦采纳,获得10
7秒前
共享精神应助黎黎采纳,获得10
7秒前
Steplan完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
甲虫完成签到,获得积分10
8秒前
活泼白山完成签到 ,获得积分10
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567