Real-Time Detection of Fall From Bed Using a Single Depth Camera

可穿戴计算机 计算机科学 人工智能 任务(项目管理) 计算机视觉 事件(粒子物理) 边距(机器学习) 实时计算 模拟 机器学习 工程类 嵌入式系统 物理 系统工程 量子力学
作者
Feng Zhao,Zhiguo Cao,Yang Xiao,Jing Mao,Junsong Yuan
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 1018-1032 被引量:58
标识
DOI:10.1109/tase.2018.2861382
摘要

Toward the medical and living healthcare for the elderly and patients, fall from bed is a critical accident that may lead to serious injuries. To alleviate this, an essential problem is to detect this event in time for earning the rescue time. Although some efforts that resort to the wearable devices and smart healthcare room have already been paid to address this problem, the performance is still not satisfactory enough for the practical applications. In this paper, a novel fall from a bed detection method is proposed. In particular, the depth camera is used as the visual sensor due to its insensitivity to illumination variation and capacity of privacy protection. To characterize the human activity well, an effective human upper body detection approach able to extract human head and upper body center is proposed using random forest. Compared with the existing widely used human body parsing methods (e.g., Microsoft Kinect SDK or OpenNI SDK), our proposition can still work reliably when human-bed interaction happens. According to the motion information of human upper body, the fall from bed detection task is formulated as a two-class classification problem. Then, it is solved using the large margin nearest neighbor classification approach. Our method can meet the real-time running requirement with the normal computer. In experiments, we construct a fall from bed detection data set that contains the samples from 42 volunteers (26 males and 16 females) for test. The experimental results demonstrate the effectiveness and efficiency of our proposition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未晚完成签到,获得积分10
1秒前
邱梓铭完成签到,获得积分10
1秒前
2秒前
DD完成签到,获得积分10
2秒前
zmmm完成签到,获得积分10
3秒前
3秒前
陌上尘开发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
星辰大海应助warburg采纳,获得10
4秒前
LAYWL完成签到,获得积分10
4秒前
九月初五完成签到,获得积分10
5秒前
爆米花应助Anatee采纳,获得10
5秒前
5秒前
DXF关闭了DXF文献求助
6秒前
哇哈哈发布了新的文献求助10
6秒前
少冰丶七分糖完成签到,获得积分10
6秒前
归去来兮发布了新的文献求助10
7秒前
甜美平文发布了新的文献求助10
7秒前
hi小豆发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
赤恩完成签到,获得积分10
8秒前
8秒前
chen发布了新的文献求助10
9秒前
酷炫book完成签到 ,获得积分10
9秒前
WQ完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
ysy完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
11秒前
AYiii完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743