Revealing the Effects of Electrode Crystallographic Orientation on Battery Electrochemistry via the Anisotropic Lithiation and Sodiation of ReS2

材料科学 电化学 各向异性 电池(电) 电极 插层(化学) 纳米晶 密度泛函理论 结晶学 纳米技术 无机化学 化学 物理化学 计算化学 光学 物理 功率(物理) 量子力学
作者
Qianqian Li,Yaobin Xu,Zhenpeng Yao,Joohoon Kang,Xiaolong Liu,Chris Wolverton,Mark C. Hersam,Jinsong Wu,Vinayak P. Dravid
出处
期刊:ACS Nano [American Chemical Society]
卷期号:12 (8): 7875-7882 被引量:30
标识
DOI:10.1021/acsnano.8b02203
摘要

The crystallographic orientation of battery electrode materials can significantly impact electrochemical performance, such as rate capability and cycling stability. Among the layered transition metal dichalcogenides, rhenium disulfide (ReS2) has the largest anisotropic ratio between the two main axes in addition to exceptionally weak interlayer coupling, which serves as an ideal system to observe and analyze anisotropy of electrochemical phenomena. Here, we report anisotropic lithiation and sodiation of exfoliated ReS2 at atomic resolution using in situ transmission electron microscopy. These results reveal the role of crystallographic orientation and anisotropy on battery electrode electrochemistry. Complemented with density functional theory calculations, the lithiation of ReS2 is found to begin with intercalation of Li-ions, followed by a conversion reaction that results in Re nanoparticles and Li2S nanocrystals. The reaction speed is highly anisotropic, occurring faster along the in-plane ReS2 layer than along the out-of-plane direction. Sodiation of ReS2 is found to proceed similarly to lithiation, although the intercalation step is relatively quicker. Furthermore, the microstructure and morphology of the reaction products after lithiation/sodiation show clear anisotropy along the in-plane and out-of-plane directions. These results suggest that crystallographic orientation in highly anisotropic electrode materials can be exploited as a design parameter to improve battery electrochemical performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
purple发布了新的文献求助10
刚刚
1秒前
zzzzzaaw发布了新的文献求助20
1秒前
容止发布了新的文献求助20
1秒前
w1245完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
wendyhaohao发布了新的文献求助30
2秒前
Jasper应助Frank采纳,获得10
2秒前
2秒前
2秒前
3秒前
合适凌晴发布了新的文献求助60
5秒前
深情的羞花完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
丘比特应助李鸣笛采纳,获得30
6秒前
怕孤单的听寒完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
9秒前
nihaolaojiu发布了新的文献求助30
9秒前
9秒前
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
陈坤完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
羽落楠桂发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736967
求助须知:如何正确求助?哪些是违规求助? 5369478
关于积分的说明 15334426
捐赠科研通 4880606
什么是DOI,文献DOI怎么找? 2622984
邀请新用户注册赠送积分活动 1571840
关于科研通互助平台的介绍 1528682