作者
Bingbing Zhang,Han Guo,Wei Yang,Ming Li,Ying Zou,Juan J. Loor,Cheng Xia,Chuang Xu
摘要
Hypocalcemia in dairy cows is often associated with inflammation-related disorders such as metritis and mastitis. The protein encoded by the Ca2+ release-activated calcium modulator 1 (ORAI1) gene is a membrane Ca2+ channel subunit that is activated when Ca2+ stores are depleted. Polymorphonuclear neutrophils (PMNL) have a crucial role in the defense against infection through migration, adhesion, chemotaxis, phagocytosis, and reactive oxygen species (ROS) production in response to pathogens. Whether hypocalcemia affects the activity of PMNL and if ORAI1 is involved remains unknown. To address this, PMNL were isolated at 3 d of calving from dairy cows diagnosed as clinically healthy (n = 20, CONTROL) or with plasma concentration of calcium < 2.0 mmol/L as a criterion for diagnosis of subclinical hypocalcemia (n = 20, HYPOCAL). PMNL isolated from both groups of cows were treated with or without the sarcoendoplasmic Ca2+ ATPase inhibitor thapsigargin, Ca2+ ionophore Ionomycin, and ORAI1 blocker 2APB. The intracellular Ca2+ concentration, ORAI1 abundance, ROS, phagocytosis rate, migration, and adhering capacity of treated PMNL were evaluated. Some of the in vitro assays also included use of small interfering ORAI1 RNA (siORAI1), 100 nM 1,25(OH)2D3, or 100 nM parathyroid hormone (PTH). Intracellular Ca2+ concentration was markedly lower in HYPOCAL. In addition, ORAI1 was detected in PMNL plasma membrane via FACS and was markedly lower in cows with HYPOCAL. Migration, adhesion capacity, and phagocytosis rate of PMNL were lower in response to HYPOCAL. Furthermore, plasma and PMNL concentration of nucleosome assembly protein (NAP2) and pro-platelet basic protein (CXCL7) was markedly lower with HYPOCAL. All these changes were associated with lower ROS production by PMNL. Thapsigargin and ionomycin treatment in vitro increased ORAI1 expression, migration of PMNL, adhering capacity, phagocytosis rate, and ROS production; conversely, those effects were abrogated by siORAI1 and ORAI1 inhibitor 2APB treatment. Also cytosolic Ca2+ concentration and ORAI1 abundance were increased by 1,25(OH)2D3 and PTH supplementation. Overall, the data indicate that failure of PMNL to uptake Ca2+ due to downregulation of ORAI1 during subclinical hypocalcemia is a factor contributing to impaired PMNL function. In addition, plasma PTH or 1,25(OH)2D3 could regulate ORAI1 and also participate in the regulation of PMNL activity.